![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isarchi | Structured version Visualization version GIF version |
Description: Express the predicate "𝑊 is Archimedean ". (Contributed by Thierry Arnoux, 30-Jan-2018.) |
Ref | Expression |
---|---|
isarchi.b | ⊢ 𝐵 = (Base‘𝑊) |
isarchi.0 | ⊢ 0 = (0g‘𝑊) |
isarchi.i | ⊢ < = (⋘‘𝑊) |
Ref | Expression |
---|---|
isarchi | ⊢ (𝑊 ∈ 𝑉 → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6352 | . . . 4 ⊢ (𝑤 = 𝑊 → (⋘‘𝑤) = (⋘‘𝑊)) | |
2 | 1 | eqeq1d 2762 | . . 3 ⊢ (𝑤 = 𝑊 → ((⋘‘𝑤) = ∅ ↔ (⋘‘𝑊) = ∅)) |
3 | df-archi 30042 | . . 3 ⊢ Archi = {𝑤 ∣ (⋘‘𝑤) = ∅} | |
4 | 2, 3 | elab2g 3493 | . 2 ⊢ (𝑊 ∈ 𝑉 → (𝑊 ∈ Archi ↔ (⋘‘𝑊) = ∅)) |
5 | isarchi.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
6 | 5 | inftmrel 30043 | . . 3 ⊢ (𝑊 ∈ 𝑉 → (⋘‘𝑊) ⊆ (𝐵 × 𝐵)) |
7 | ss0b 4116 | . . . . 5 ⊢ ((⋘‘𝑊) ⊆ ∅ ↔ (⋘‘𝑊) = ∅) | |
8 | ssrel2 5367 | . . . . 5 ⊢ ((⋘‘𝑊) ⊆ (𝐵 × 𝐵) → ((⋘‘𝑊) ⊆ ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) → 〈𝑥, 𝑦〉 ∈ ∅))) | |
9 | 7, 8 | syl5bbr 274 | . . . 4 ⊢ ((⋘‘𝑊) ⊆ (𝐵 × 𝐵) → ((⋘‘𝑊) = ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) → 〈𝑥, 𝑦〉 ∈ ∅))) |
10 | noel 4062 | . . . . . . . 8 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
11 | 10 | nbn 361 | . . . . . . 7 ⊢ (¬ 〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) ↔ (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
12 | isarchi.i | . . . . . . . . 9 ⊢ < = (⋘‘𝑊) | |
13 | 12 | breqi 4810 | . . . . . . . 8 ⊢ (𝑥 < 𝑦 ↔ 𝑥(⋘‘𝑊)𝑦) |
14 | df-br 4805 | . . . . . . . 8 ⊢ (𝑥(⋘‘𝑊)𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (⋘‘𝑊)) | |
15 | 13, 14 | bitri 264 | . . . . . . 7 ⊢ (𝑥 < 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (⋘‘𝑊)) |
16 | 11, 15 | xchnxbir 322 | . . . . . 6 ⊢ (¬ 𝑥 < 𝑦 ↔ (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
17 | 10 | pm2.21i 116 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ → 〈𝑥, 𝑦〉 ∈ (⋘‘𝑊)) |
18 | dfbi2 663 | . . . . . . 7 ⊢ ((〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) ↔ 〈𝑥, 𝑦〉 ∈ ∅) ↔ ((〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) → 〈𝑥, 𝑦〉 ∈ ∅) ∧ (〈𝑥, 𝑦〉 ∈ ∅ → 〈𝑥, 𝑦〉 ∈ (⋘‘𝑊)))) | |
19 | 17, 18 | mpbiran2 992 | . . . . . 6 ⊢ ((〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) ↔ 〈𝑥, 𝑦〉 ∈ ∅) ↔ (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) → 〈𝑥, 𝑦〉 ∈ ∅)) |
20 | 16, 19 | bitri 264 | . . . . 5 ⊢ (¬ 𝑥 < 𝑦 ↔ (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) → 〈𝑥, 𝑦〉 ∈ ∅)) |
21 | 20 | 2ralbii 3119 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) → 〈𝑥, 𝑦〉 ∈ ∅)) |
22 | 9, 21 | syl6bbr 278 | . . 3 ⊢ ((⋘‘𝑊) ⊆ (𝐵 × 𝐵) → ((⋘‘𝑊) = ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦)) |
23 | 6, 22 | syl 17 | . 2 ⊢ (𝑊 ∈ 𝑉 → ((⋘‘𝑊) = ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦)) |
24 | 4, 23 | bitrd 268 | 1 ⊢ (𝑊 ∈ 𝑉 → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ⊆ wss 3715 ∅c0 4058 〈cop 4327 class class class wbr 4804 × cxp 5264 ‘cfv 6049 Basecbs 16059 0gc0g 16302 ⋘cinftm 30039 Archicarchi 30040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-iota 6012 df-fun 6051 df-fv 6057 df-ov 6816 df-inftm 30041 df-archi 30042 |
This theorem is referenced by: xrnarchi 30047 isarchi2 30048 |
Copyright terms: Public domain | W3C validator |