Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isarchi2 Structured version   Visualization version   GIF version

Theorem isarchi2 30809
Description: Alternative way to express the predicate "𝑊 is Archimedean ", for Tosets. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
isarchi2.b 𝐵 = (Base‘𝑊)
isarchi2.0 0 = (0g𝑊)
isarchi2.x · = (.g𝑊)
isarchi2.l = (le‘𝑊)
isarchi2.t < = (lt‘𝑊)
Assertion
Ref Expression
isarchi2 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 (𝑛 · 𝑥))))
Distinct variable groups:   𝑥,𝑛,𝑦,𝐵   𝑛,𝑊,𝑥,𝑦
Allowed substitution hints:   < (𝑥,𝑦,𝑛)   · (𝑥,𝑦,𝑛)   (𝑥,𝑦,𝑛)   0 (𝑥,𝑦,𝑛)

Proof of Theorem isarchi2
StepHypRef Expression
1 isarchi2.b . . . 4 𝐵 = (Base‘𝑊)
2 isarchi2.0 . . . 4 0 = (0g𝑊)
3 eqid 2821 . . . 4 (⋘‘𝑊) = (⋘‘𝑊)
41, 2, 3isarchi 30806 . . 3 (𝑊 ∈ Toset → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ¬ 𝑥(⋘‘𝑊)𝑦))
54adantr 483 . 2 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ¬ 𝑥(⋘‘𝑊)𝑦))
6 simpl1l 1220 . . . . . . . 8 ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ Toset)
7 simpl1r 1221 . . . . . . . . 9 ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ Mnd)
8 simpr 487 . . . . . . . . . 10 ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
98nnnn0d 11949 . . . . . . . . 9 ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
10 simpl2 1188 . . . . . . . . 9 ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ) → 𝑥𝐵)
11 isarchi2.x . . . . . . . . . 10 · = (.g𝑊)
121, 11mulgnn0cl 18238 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝑥𝐵) → (𝑛 · 𝑥) ∈ 𝐵)
137, 9, 10, 12syl3anc 1367 . . . . . . . 8 ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ) → (𝑛 · 𝑥) ∈ 𝐵)
14 simpl3 1189 . . . . . . . 8 ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ) → 𝑦𝐵)
15 isarchi2.l . . . . . . . . . 10 = (le‘𝑊)
16 isarchi2.t . . . . . . . . . 10 < = (lt‘𝑊)
171, 15, 16tltnle 30644 . . . . . . . . 9 ((𝑊 ∈ Toset ∧ (𝑛 · 𝑥) ∈ 𝐵𝑦𝐵) → ((𝑛 · 𝑥) < 𝑦 ↔ ¬ 𝑦 (𝑛 · 𝑥)))
1817con2bid 357 . . . . . . . 8 ((𝑊 ∈ Toset ∧ (𝑛 · 𝑥) ∈ 𝐵𝑦𝐵) → (𝑦 (𝑛 · 𝑥) ↔ ¬ (𝑛 · 𝑥) < 𝑦))
196, 13, 14, 18syl3anc 1367 . . . . . . 7 ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ) → (𝑦 (𝑛 · 𝑥) ↔ ¬ (𝑛 · 𝑥) < 𝑦))
2019rexbidva 3296 . . . . . 6 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) → (∃𝑛 ∈ ℕ 𝑦 (𝑛 · 𝑥) ↔ ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦))
2120imbi2d 343 . . . . 5 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 (𝑛 · 𝑥)) ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦)))
221, 2, 11, 16isinftm 30805 . . . . . . . 8 ((𝑊 ∈ Toset ∧ 𝑥𝐵𝑦𝐵) → (𝑥(⋘‘𝑊)𝑦 ↔ ( 0 < 𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦)))
2322notbid 320 . . . . . . 7 ((𝑊 ∈ Toset ∧ 𝑥𝐵𝑦𝐵) → (¬ 𝑥(⋘‘𝑊)𝑦 ↔ ¬ ( 0 < 𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦)))
24 rexnal 3238 . . . . . . . . 9 (∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦 ↔ ¬ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦)
2524imbi2i 338 . . . . . . . 8 (( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦) ↔ ( 0 < 𝑥 → ¬ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦))
26 imnan 402 . . . . . . . 8 (( 0 < 𝑥 → ¬ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦) ↔ ¬ ( 0 < 𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦))
2725, 26bitr2i 278 . . . . . . 7 (¬ ( 0 < 𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦) ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦))
2823, 27syl6bb 289 . . . . . 6 ((𝑊 ∈ Toset ∧ 𝑥𝐵𝑦𝐵) → (¬ 𝑥(⋘‘𝑊)𝑦 ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦)))
29283adant1r 1173 . . . . 5 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) → (¬ 𝑥(⋘‘𝑊)𝑦 ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦)))
3021, 29bitr4d 284 . . . 4 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 (𝑛 · 𝑥)) ↔ ¬ 𝑥(⋘‘𝑊)𝑦))
31303expb 1116 . . 3 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 (𝑛 · 𝑥)) ↔ ¬ 𝑥(⋘‘𝑊)𝑦))
32312ralbidva 3198 . 2 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 (𝑛 · 𝑥)) ↔ ∀𝑥𝐵𝑦𝐵 ¬ 𝑥(⋘‘𝑊)𝑦))
335, 32bitr4d 284 1 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 (𝑛 · 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139   class class class wbr 5058  cfv 6349  (class class class)co 7150  cn 11632  0cn0 11891  Basecbs 16477  lecple 16566  0gc0g 16707  ltcplt 17545  Tosetctos 17637  Mndcmnd 17905  .gcmg 18218  cinftm 30800  Archicarchi 30801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-seq 13364  df-0g 16709  df-proset 17532  df-poset 17550  df-plt 17562  df-toset 17638  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mulg 18219  df-inftm 30802  df-archi 30803
This theorem is referenced by:  submarchi  30810  isarchi3  30811  archirng  30812
  Copyright terms: Public domain W3C validator