Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isarchiofld Structured version   Visualization version   GIF version

Theorem isarchiofld 29602
Description: Axiom of Archimedes : a characterization of the Archimedean property for ordered fields. (Contributed by Thierry Arnoux, 9-Apr-2018.)
Hypotheses
Ref Expression
isarchiofld.b 𝐵 = (Base‘𝑊)
isarchiofld.h 𝐻 = (ℤRHom‘𝑊)
isarchiofld.l < = (lt‘𝑊)
Assertion
Ref Expression
isarchiofld (𝑊 ∈ oField → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)))
Distinct variable groups:   𝑥,𝑛,𝐵   𝑛,𝑊,𝑥   𝑥,𝐻   < ,𝑛,𝑥
Allowed substitution hint:   𝐻(𝑛)

Proof of Theorem isarchiofld
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isofld 29587 . . . 4 (𝑊 ∈ oField ↔ (𝑊 ∈ Field ∧ 𝑊 ∈ oRing))
21simprbi 480 . . 3 (𝑊 ∈ oField → 𝑊 ∈ oRing)
3 orngogrp 29586 . . 3 (𝑊 ∈ oRing → 𝑊 ∈ oGrp)
4 isarchiofld.b . . . 4 𝐵 = (Base‘𝑊)
5 eqid 2621 . . . 4 (0g𝑊) = (0g𝑊)
6 isarchiofld.l . . . 4 < = (lt‘𝑊)
7 eqid 2621 . . . 4 (.g𝑊) = (.g𝑊)
84, 5, 6, 7isarchi3 29526 . . 3 (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦))))
92, 3, 83syl 18 . 2 (𝑊 ∈ oField → (𝑊 ∈ Archi ↔ ∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦))))
10 orngring 29585 . . . . . . 7 (𝑊 ∈ oRing → 𝑊 ∈ Ring)
11 eqid 2621 . . . . . . . 8 (1r𝑊) = (1r𝑊)
124, 11ringidcl 18489 . . . . . . 7 (𝑊 ∈ Ring → (1r𝑊) ∈ 𝐵)
132, 10, 123syl 18 . . . . . 6 (𝑊 ∈ oField → (1r𝑊) ∈ 𝐵)
14 breq2 4617 . . . . . . . . 9 (𝑦 = (1r𝑊) → ((0g𝑊) < 𝑦 ↔ (0g𝑊) < (1r𝑊)))
15 oveq2 6612 . . . . . . . . . . 11 (𝑦 = (1r𝑊) → (𝑛(.g𝑊)𝑦) = (𝑛(.g𝑊)(1r𝑊)))
1615breq2d 4625 . . . . . . . . . 10 (𝑦 = (1r𝑊) → (𝑥 < (𝑛(.g𝑊)𝑦) ↔ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
1716rexbidv 3045 . . . . . . . . 9 (𝑦 = (1r𝑊) → (∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦) ↔ ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
1814, 17imbi12d 334 . . . . . . . 8 (𝑦 = (1r𝑊) → (((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)) ↔ ((0g𝑊) < (1r𝑊) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊)))))
1918ralbidv 2980 . . . . . . 7 (𝑦 = (1r𝑊) → (∀𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)) ↔ ∀𝑥𝐵 ((0g𝑊) < (1r𝑊) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊)))))
2019rspcv 3291 . . . . . 6 ((1r𝑊) ∈ 𝐵 → (∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)) → ∀𝑥𝐵 ((0g𝑊) < (1r𝑊) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊)))))
2113, 20syl 17 . . . . 5 (𝑊 ∈ oField → (∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)) → ∀𝑥𝐵 ((0g𝑊) < (1r𝑊) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊)))))
225, 11, 6ofldlt1 29598 . . . . . . 7 (𝑊 ∈ oField → (0g𝑊) < (1r𝑊))
23 pm5.5 351 . . . . . . 7 ((0g𝑊) < (1r𝑊) → (((0g𝑊) < (1r𝑊) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))) ↔ ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
2422, 23syl 17 . . . . . 6 (𝑊 ∈ oField → (((0g𝑊) < (1r𝑊) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))) ↔ ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
2524ralbidv 2980 . . . . 5 (𝑊 ∈ oField → (∀𝑥𝐵 ((0g𝑊) < (1r𝑊) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))) ↔ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
2621, 25sylibd 229 . . . 4 (𝑊 ∈ oField → (∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)) → ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
272, 10syl 17 . . . . . . . 8 (𝑊 ∈ oField → 𝑊 ∈ Ring)
28 nnz 11343 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
29 isarchiofld.h . . . . . . . . 9 𝐻 = (ℤRHom‘𝑊)
3029, 7, 11zrhmulg 19777 . . . . . . . 8 ((𝑊 ∈ Ring ∧ 𝑛 ∈ ℤ) → (𝐻𝑛) = (𝑛(.g𝑊)(1r𝑊)))
3127, 28, 30syl2an 494 . . . . . . 7 ((𝑊 ∈ oField ∧ 𝑛 ∈ ℕ) → (𝐻𝑛) = (𝑛(.g𝑊)(1r𝑊)))
3231breq2d 4625 . . . . . 6 ((𝑊 ∈ oField ∧ 𝑛 ∈ ℕ) → (𝑥 < (𝐻𝑛) ↔ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
3332rexbidva 3042 . . . . 5 (𝑊 ∈ oField → (∃𝑛 ∈ ℕ 𝑥 < (𝐻𝑛) ↔ ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
3433ralbidv 2980 . . . 4 (𝑊 ∈ oField → (∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛) ↔ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
3526, 34sylibrd 249 . . 3 (𝑊 ∈ oField → (∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)) → ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)))
36 nfv 1840 . . . . . . . 8 𝑥 𝑊 ∈ oField
37 nfra1 2936 . . . . . . . 8 𝑥𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)
3836, 37nfan 1825 . . . . . . 7 𝑥(𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛))
39 nfv 1840 . . . . . . 7 𝑥 𝑦𝐵
4038, 39nfan 1825 . . . . . 6 𝑥((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ 𝑦𝐵)
4127ad3antrrr 765 . . . . . . . . . . 11 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → 𝑊 ∈ Ring)
42 simplrr 800 . . . . . . . . . . 11 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → 𝑥𝐵)
43 simplrl 799 . . . . . . . . . . . 12 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → 𝑦𝐵)
44 simpr 477 . . . . . . . . . . . . . 14 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → (0g𝑊) < 𝑦)
45 simplll 797 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → 𝑊 ∈ oField)
46 ringgrp 18473 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Ring → 𝑊 ∈ Grp)
474, 5grpidcl 17371 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Grp → (0g𝑊) ∈ 𝐵)
4841, 46, 473syl 18 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → (0g𝑊) ∈ 𝐵)
496pltne 16883 . . . . . . . . . . . . . . 15 ((𝑊 ∈ oField ∧ (0g𝑊) ∈ 𝐵𝑦𝐵) → ((0g𝑊) < 𝑦 → (0g𝑊) ≠ 𝑦))
5045, 48, 43, 49syl3anc 1323 . . . . . . . . . . . . . 14 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → ((0g𝑊) < 𝑦 → (0g𝑊) ≠ 𝑦))
5144, 50mpd 15 . . . . . . . . . . . . 13 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → (0g𝑊) ≠ 𝑦)
5251necomd 2845 . . . . . . . . . . . 12 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → 𝑦 ≠ (0g𝑊))
531simplbi 476 . . . . . . . . . . . . . 14 (𝑊 ∈ oField → 𝑊 ∈ Field)
54 isfld 18677 . . . . . . . . . . . . . . 15 (𝑊 ∈ Field ↔ (𝑊 ∈ DivRing ∧ 𝑊 ∈ CRing))
5554simplbi 476 . . . . . . . . . . . . . 14 (𝑊 ∈ Field → 𝑊 ∈ DivRing)
5653, 55syl 17 . . . . . . . . . . . . 13 (𝑊 ∈ oField → 𝑊 ∈ DivRing)
57 eqid 2621 . . . . . . . . . . . . . 14 (Unit‘𝑊) = (Unit‘𝑊)
584, 57, 5drngunit 18673 . . . . . . . . . . . . 13 (𝑊 ∈ DivRing → (𝑦 ∈ (Unit‘𝑊) ↔ (𝑦𝐵𝑦 ≠ (0g𝑊))))
5945, 56, 583syl 18 . . . . . . . . . . . 12 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → (𝑦 ∈ (Unit‘𝑊) ↔ (𝑦𝐵𝑦 ≠ (0g𝑊))))
6043, 52, 59mpbir2and 956 . . . . . . . . . . 11 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → 𝑦 ∈ (Unit‘𝑊))
61 eqid 2621 . . . . . . . . . . . 12 (/r𝑊) = (/r𝑊)
624, 57, 61dvrcl 18607 . . . . . . . . . . 11 ((𝑊 ∈ Ring ∧ 𝑥𝐵𝑦 ∈ (Unit‘𝑊)) → (𝑥(/r𝑊)𝑦) ∈ 𝐵)
6341, 42, 60, 62syl3anc 1323 . . . . . . . . . 10 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → (𝑥(/r𝑊)𝑦) ∈ 𝐵)
64 simpr 477 . . . . . . . . . . . 12 ((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) → ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛))
65 breq1 4616 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑥 < (𝐻𝑛) ↔ 𝑧 < (𝐻𝑛)))
6665rexbidv 3045 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (∃𝑛 ∈ ℕ 𝑥 < (𝐻𝑛) ↔ ∃𝑛 ∈ ℕ 𝑧 < (𝐻𝑛)))
6766cbvralv 3159 . . . . . . . . . . . 12 (∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛) ↔ ∀𝑧𝐵𝑛 ∈ ℕ 𝑧 < (𝐻𝑛))
6864, 67sylib 208 . . . . . . . . . . 11 ((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) → ∀𝑧𝐵𝑛 ∈ ℕ 𝑧 < (𝐻𝑛))
6968ad2antrr 761 . . . . . . . . . 10 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → ∀𝑧𝐵𝑛 ∈ ℕ 𝑧 < (𝐻𝑛))
70 breq1 4616 . . . . . . . . . . . 12 (𝑧 = (𝑥(/r𝑊)𝑦) → (𝑧 < (𝐻𝑛) ↔ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)))
7170rexbidv 3045 . . . . . . . . . . 11 (𝑧 = (𝑥(/r𝑊)𝑦) → (∃𝑛 ∈ ℕ 𝑧 < (𝐻𝑛) ↔ ∃𝑛 ∈ ℕ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)))
7271rspcv 3291 . . . . . . . . . 10 ((𝑥(/r𝑊)𝑦) ∈ 𝐵 → (∀𝑧𝐵𝑛 ∈ ℕ 𝑧 < (𝐻𝑛) → ∃𝑛 ∈ ℕ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)))
7363, 69, 72sylc 65 . . . . . . . . 9 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → ∃𝑛 ∈ ℕ (𝑥(/r𝑊)𝑦) < (𝐻𝑛))
74 eqid 2621 . . . . . . . . . . . . . 14 (.r𝑊) = (.r𝑊)
75 simp-4l 805 . . . . . . . . . . . . . . 15 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑊 ∈ oField)
7675, 2syl 17 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑊 ∈ oRing)
7775, 27syl 17 . . . . . . . . . . . . . . 15 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑊 ∈ Ring)
78 simp-4r 806 . . . . . . . . . . . . . . . 16 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (𝑦𝐵𝑥𝐵))
7978simprd 479 . . . . . . . . . . . . . . 15 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑥𝐵)
8078simpld 475 . . . . . . . . . . . . . . . 16 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑦𝐵)
81 simpllr 798 . . . . . . . . . . . . . . . . . 18 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (0g𝑊) < 𝑦)
8277, 46, 473syl 18 . . . . . . . . . . . . . . . . . . 19 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (0g𝑊) ∈ 𝐵)
8375, 82, 80, 49syl3anc 1323 . . . . . . . . . . . . . . . . . 18 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → ((0g𝑊) < 𝑦 → (0g𝑊) ≠ 𝑦))
8481, 83mpd 15 . . . . . . . . . . . . . . . . 17 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (0g𝑊) ≠ 𝑦)
8584necomd 2845 . . . . . . . . . . . . . . . 16 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑦 ≠ (0g𝑊))
8675, 56, 583syl 18 . . . . . . . . . . . . . . . 16 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (𝑦 ∈ (Unit‘𝑊) ↔ (𝑦𝐵𝑦 ≠ (0g𝑊))))
8780, 85, 86mpbir2and 956 . . . . . . . . . . . . . . 15 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑦 ∈ (Unit‘𝑊))
8877, 79, 87, 62syl3anc 1323 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (𝑥(/r𝑊)𝑦) ∈ 𝐵)
89 simplr 791 . . . . . . . . . . . . . . . 16 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑛 ∈ ℕ)
9075, 89, 31syl2anc 692 . . . . . . . . . . . . . . 15 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (𝐻𝑛) = (𝑛(.g𝑊)(1r𝑊)))
9177, 46syl 17 . . . . . . . . . . . . . . . 16 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑊 ∈ Grp)
9289, 28syl 17 . . . . . . . . . . . . . . . 16 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑛 ∈ ℤ)
9377, 12syl 17 . . . . . . . . . . . . . . . 16 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (1r𝑊) ∈ 𝐵)
944, 7mulgcl 17480 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ (1r𝑊) ∈ 𝐵) → (𝑛(.g𝑊)(1r𝑊)) ∈ 𝐵)
9591, 92, 93, 94syl3anc 1323 . . . . . . . . . . . . . . 15 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (𝑛(.g𝑊)(1r𝑊)) ∈ 𝐵)
9690, 95eqeltrd 2698 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (𝐻𝑛) ∈ 𝐵)
9775, 56syl 17 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑊 ∈ DivRing)
98 simpr 477 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (𝑥(/r𝑊)𝑦) < (𝐻𝑛))
994, 74, 5, 76, 88, 96, 80, 6, 97, 98, 81orngrmullt 29593 . . . . . . . . . . . . 13 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → ((𝑥(/r𝑊)𝑦)(.r𝑊)𝑦) < ((𝐻𝑛)(.r𝑊)𝑦))
1004, 57, 61, 74dvrcan1 18612 . . . . . . . . . . . . . 14 ((𝑊 ∈ Ring ∧ 𝑥𝐵𝑦 ∈ (Unit‘𝑊)) → ((𝑥(/r𝑊)𝑦)(.r𝑊)𝑦) = 𝑥)
10177, 79, 87, 100syl3anc 1323 . . . . . . . . . . . . 13 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → ((𝑥(/r𝑊)𝑦)(.r𝑊)𝑦) = 𝑥)
10290oveq1d 6619 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → ((𝐻𝑛)(.r𝑊)𝑦) = ((𝑛(.g𝑊)(1r𝑊))(.r𝑊)𝑦))
1034, 7, 74mulgass2 18522 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Ring ∧ (𝑛 ∈ ℤ ∧ (1r𝑊) ∈ 𝐵𝑦𝐵)) → ((𝑛(.g𝑊)(1r𝑊))(.r𝑊)𝑦) = (𝑛(.g𝑊)((1r𝑊)(.r𝑊)𝑦)))
10477, 92, 93, 80, 103syl13anc 1325 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → ((𝑛(.g𝑊)(1r𝑊))(.r𝑊)𝑦) = (𝑛(.g𝑊)((1r𝑊)(.r𝑊)𝑦)))
1054, 74, 11ringlidm 18492 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Ring ∧ 𝑦𝐵) → ((1r𝑊)(.r𝑊)𝑦) = 𝑦)
10677, 80, 105syl2anc 692 . . . . . . . . . . . . . . 15 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → ((1r𝑊)(.r𝑊)𝑦) = 𝑦)
107106oveq2d 6620 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (𝑛(.g𝑊)((1r𝑊)(.r𝑊)𝑦)) = (𝑛(.g𝑊)𝑦))
108102, 104, 1073eqtrd 2659 . . . . . . . . . . . . 13 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → ((𝐻𝑛)(.r𝑊)𝑦) = (𝑛(.g𝑊)𝑦))
10999, 101, 1083brtr3d 4644 . . . . . . . . . . . 12 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑥 < (𝑛(.g𝑊)𝑦))
110109ex 450 . . . . . . . . . . 11 ((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) → ((𝑥(/r𝑊)𝑦) < (𝐻𝑛) → 𝑥 < (𝑛(.g𝑊)𝑦)))
111110reximdva 3011 . . . . . . . . . 10 (((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → (∃𝑛 ∈ ℕ (𝑥(/r𝑊)𝑦) < (𝐻𝑛) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)))
112111adantllr 754 . . . . . . . . 9 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → (∃𝑛 ∈ ℕ (𝑥(/r𝑊)𝑦) < (𝐻𝑛) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)))
11373, 112mpd 15 . . . . . . . 8 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦))
114113ex 450 . . . . . . 7 (((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) → ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)))
115114expr 642 . . . . . 6 (((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ 𝑦𝐵) → (𝑥𝐵 → ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦))))
11640, 115ralrimi 2951 . . . . 5 (((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ 𝑦𝐵) → ∀𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)))
117116ralrimiva 2960 . . . 4 ((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) → ∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)))
118117ex 450 . . 3 (𝑊 ∈ oField → (∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛) → ∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦))))
11935, 118impbid 202 . 2 (𝑊 ∈ oField → (∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)) ↔ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)))
1209, 119bitrd 268 1 (𝑊 ∈ oField → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908   class class class wbr 4613  cfv 5847  (class class class)co 6604  cn 10964  cz 11321  Basecbs 15781  .rcmulr 15863  0gc0g 16021  ltcplt 16862  Grpcgrp 17343  .gcmg 17461  1rcur 18422  Ringcrg 18468  CRingccrg 18469  Unitcui 18560  /rcdvr 18603  DivRingcdr 18668  Fieldcfield 18669  ℤRHomczrh 19767  oGrpcogrp 29483  Archicarchi 29516  oRingcorng 29580  oFieldcofld 29581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-seq 12742  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-0g 16023  df-preset 16849  df-poset 16867  df-plt 16879  df-toset 16955  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-subg 17512  df-ghm 17579  df-cmn 18116  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-dvr 18604  df-rnghom 18636  df-drng 18670  df-field 18671  df-subrg 18699  df-cnfld 19666  df-zring 19738  df-zrh 19771  df-omnd 29484  df-ogrp 29485  df-inftm 29517  df-archi 29518  df-orng 29582  df-ofld 29583
This theorem is referenced by:  rearchi  29627
  Copyright terms: Public domain W3C validator