Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isassintop Structured version   Visualization version   GIF version

Theorem isassintop 42356
 Description: The predicate "is an associative (closed internal binary) operations for a set". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.)
Assertion
Ref Expression
isassintop (𝑀𝑉 → ( ∈ ( assIntOp ‘𝑀) ↔ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
Distinct variable groups:   𝑥,𝑀,𝑦,𝑧   𝑥, ,𝑦,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem isassintop
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 assintopmap 42352 . . . . 5 (𝑀𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ (𝑀𝑚 (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀})
21eleq2d 2825 . . . 4 (𝑀𝑉 → ( ∈ ( assIntOp ‘𝑀) ↔ ∈ {𝑜 ∈ (𝑀𝑚 (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀}))
3 breq1 4807 . . . . 5 (𝑜 = → (𝑜 assLaw 𝑀 assLaw 𝑀))
43elrab 3504 . . . 4 ( ∈ {𝑜 ∈ (𝑀𝑚 (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀} ↔ ( ∈ (𝑀𝑚 (𝑀 × 𝑀)) ∧ assLaw 𝑀))
52, 4syl6bb 276 . . 3 (𝑀𝑉 → ( ∈ ( assIntOp ‘𝑀) ↔ ( ∈ (𝑀𝑚 (𝑀 × 𝑀)) ∧ assLaw 𝑀)))
6 elmapi 8045 . . . . . 6 ( ∈ (𝑀𝑚 (𝑀 × 𝑀)) → :(𝑀 × 𝑀)⟶𝑀)
76ad2antrl 766 . . . . 5 ((𝑀𝑉 ∧ ( ∈ (𝑀𝑚 (𝑀 × 𝑀)) ∧ assLaw 𝑀)) → :(𝑀 × 𝑀)⟶𝑀)
8 isasslaw 42338 . . . . . . . 8 (( ∈ (𝑀𝑚 (𝑀 × 𝑀)) ∧ 𝑀𝑉) → ( assLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
98biimpd 219 . . . . . . 7 (( ∈ (𝑀𝑚 (𝑀 × 𝑀)) ∧ 𝑀𝑉) → ( assLaw 𝑀 → ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
109impancom 455 . . . . . 6 (( ∈ (𝑀𝑚 (𝑀 × 𝑀)) ∧ assLaw 𝑀) → (𝑀𝑉 → ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
1110impcom 445 . . . . 5 ((𝑀𝑉 ∧ ( ∈ (𝑀𝑚 (𝑀 × 𝑀)) ∧ assLaw 𝑀)) → ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
127, 11jca 555 . . . 4 ((𝑀𝑉 ∧ ( ∈ (𝑀𝑚 (𝑀 × 𝑀)) ∧ assLaw 𝑀)) → ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
1312ex 449 . . 3 (𝑀𝑉 → (( ∈ (𝑀𝑚 (𝑀 × 𝑀)) ∧ assLaw 𝑀) → ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
145, 13sylbid 230 . 2 (𝑀𝑉 → ( ∈ ( assIntOp ‘𝑀) → ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
15 isclintop 42353 . . . . . . 7 (𝑀𝑉 → ( ∈ ( clIntOp ‘𝑀) ↔ :(𝑀 × 𝑀)⟶𝑀))
1615biimprcd 240 . . . . . 6 ( :(𝑀 × 𝑀)⟶𝑀 → (𝑀𝑉 ∈ ( clIntOp ‘𝑀)))
1716adantr 472 . . . . 5 (( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))) → (𝑀𝑉 ∈ ( clIntOp ‘𝑀)))
1817impcom 445 . . . 4 ((𝑀𝑉 ∧ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))) → ∈ ( clIntOp ‘𝑀))
19 sqxpexg 7128 . . . . . . . . 9 (𝑀𝑉 → (𝑀 × 𝑀) ∈ V)
20 fex 6653 . . . . . . . . 9 (( :(𝑀 × 𝑀)⟶𝑀 ∧ (𝑀 × 𝑀) ∈ V) → ∈ V)
2119, 20sylan2 492 . . . . . . . 8 (( :(𝑀 × 𝑀)⟶𝑀𝑀𝑉) → ∈ V)
2221ancoms 468 . . . . . . 7 ((𝑀𝑉 :(𝑀 × 𝑀)⟶𝑀) → ∈ V)
23 simpl 474 . . . . . . 7 ((𝑀𝑉 :(𝑀 × 𝑀)⟶𝑀) → 𝑀𝑉)
24 isasslaw 42338 . . . . . . . 8 (( ∈ V ∧ 𝑀𝑉) → ( assLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
2524bicomd 213 . . . . . . 7 (( ∈ V ∧ 𝑀𝑉) → (∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) ↔ assLaw 𝑀))
2622, 23, 25syl2anc 696 . . . . . 6 ((𝑀𝑉 :(𝑀 × 𝑀)⟶𝑀) → (∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) ↔ assLaw 𝑀))
2726biimpd 219 . . . . 5 ((𝑀𝑉 :(𝑀 × 𝑀)⟶𝑀) → (∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) → assLaw 𝑀))
2827impr 650 . . . 4 ((𝑀𝑉 ∧ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))) → assLaw 𝑀)
29 assintopval 42351 . . . . . . 7 (𝑀𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀})
3029adantr 472 . . . . . 6 ((𝑀𝑉 ∧ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))) → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀})
3130eleq2d 2825 . . . . 5 ((𝑀𝑉 ∧ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))) → ( ∈ ( assIntOp ‘𝑀) ↔ ∈ {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}))
323elrab 3504 . . . . 5 ( ∈ {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ↔ ( ∈ ( clIntOp ‘𝑀) ∧ assLaw 𝑀))
3331, 32syl6bb 276 . . . 4 ((𝑀𝑉 ∧ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))) → ( ∈ ( assIntOp ‘𝑀) ↔ ( ∈ ( clIntOp ‘𝑀) ∧ assLaw 𝑀)))
3418, 28, 33mpbir2and 995 . . 3 ((𝑀𝑉 ∧ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))) → ∈ ( assIntOp ‘𝑀))
3534ex 449 . 2 (𝑀𝑉 → (( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))) → ∈ ( assIntOp ‘𝑀)))
3614, 35impbid 202 1 (𝑀𝑉 → ( ∈ ( assIntOp ‘𝑀) ↔ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∀wral 3050  {crab 3054  Vcvv 3340   class class class wbr 4804   × cxp 5264  ⟶wf 6045  ‘cfv 6049  (class class class)co 6813   ↑𝑚 cmap 8023   assLaw casslaw 42330   clIntOp cclintop 42343   assIntOp cassintop 42344 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-map 8025  df-asslaw 42334  df-intop 42345  df-clintop 42346  df-assintop 42347 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator