Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isat Structured version   Visualization version   GIF version

Theorem isat 34053
Description: The predicate "is an atom". (ela 29047 analog.) (Contributed by NM, 18-Sep-2011.)
Hypotheses
Ref Expression
isatom.b 𝐵 = (Base‘𝐾)
isatom.z 0 = (0.‘𝐾)
isatom.c 𝐶 = ( ⋖ ‘𝐾)
isatom.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
isat (𝐾𝐷 → (𝑃𝐴 ↔ (𝑃𝐵0 𝐶𝑃)))

Proof of Theorem isat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isatom.b . . . 4 𝐵 = (Base‘𝐾)
2 isatom.z . . . 4 0 = (0.‘𝐾)
3 isatom.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
4 isatom.a . . . 4 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4pats 34052 . . 3 (𝐾𝐷𝐴 = {𝑥𝐵0 𝐶𝑥})
65eleq2d 2684 . 2 (𝐾𝐷 → (𝑃𝐴𝑃 ∈ {𝑥𝐵0 𝐶𝑥}))
7 breq2 4617 . . 3 (𝑥 = 𝑃 → ( 0 𝐶𝑥0 𝐶𝑃))
87elrab 3346 . 2 (𝑃 ∈ {𝑥𝐵0 𝐶𝑥} ↔ (𝑃𝐵0 𝐶𝑃))
96, 8syl6bb 276 1 (𝐾𝐷 → (𝑃𝐴 ↔ (𝑃𝐵0 𝐶𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  {crab 2911   class class class wbr 4613  cfv 5847  Basecbs 15781  0.cp0 16958  ccvr 34029  Atomscatm 34030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-iota 5810  df-fun 5849  df-fv 5855  df-ats 34034
This theorem is referenced by:  isat2  34054  atcvr0  34055  atbase  34056  isat3  34074  1cvrco  34238  1cvrjat  34241  ltrnatb  34903
  Copyright terms: Public domain W3C validator