MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isausgr Structured version   Visualization version   GIF version

Theorem isausgr 26876
Description: The property of an unordered pair to be an alternatively defined simple graph, defined as a pair (V,E) of a set V (vertex set) and a set of unordered pairs of elements of V (edge set). (Contributed by Alexander van der Vekens, 28-Aug-2017.)
Hypothesis
Ref Expression
ausgr.1 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}}
Assertion
Ref Expression
isausgr ((𝑉𝑊𝐸𝑋) → (𝑉𝐺𝐸𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
Distinct variable groups:   𝑣,𝑒,𝑥,𝐸   𝑒,𝑉,𝑣,𝑥   𝑥,𝑋
Allowed substitution hints:   𝐺(𝑥,𝑣,𝑒)   𝑊(𝑥,𝑣,𝑒)   𝑋(𝑣,𝑒)

Proof of Theorem isausgr
StepHypRef Expression
1 simpr 485 . . 3 ((𝑣 = 𝑉𝑒 = 𝐸) → 𝑒 = 𝐸)
2 pweq 4538 . . . . 5 (𝑣 = 𝑉 → 𝒫 𝑣 = 𝒫 𝑉)
32adantr 481 . . . 4 ((𝑣 = 𝑉𝑒 = 𝐸) → 𝒫 𝑣 = 𝒫 𝑉)
43rabeqdv 3482 . . 3 ((𝑣 = 𝑉𝑒 = 𝐸) → {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
51, 4sseq12d 3997 . 2 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2} ↔ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
6 ausgr.1 . 2 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}}
75, 6brabga 5412 1 ((𝑉𝑊𝐸𝑋) → (𝑉𝐺𝐸𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  {crab 3139  wss 3933  𝒫 cpw 4535   class class class wbr 5057  {copab 5119  cfv 6348  2c2 11680  chash 13678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-rab 3144  df-v 3494  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-br 5058  df-opab 5120
This theorem is referenced by:  ausgrusgrb  26877  usgrausgri  26878  ausgrumgri  26879  ausgrusgri  26880
  Copyright terms: Public domain W3C validator