![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isausgr | Structured version Visualization version GIF version |
Description: The property of an unordered pair to be an alternatively defined simple graph, defined as a pair (V,E) of a set V (vertex set) and a set of unordered pairs of elements of V (edge set). (Contributed by Alexander van der Vekens, 28-Aug-2017.) |
Ref | Expression |
---|---|
ausgr.1 | ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (#‘𝑥) = 2}} |
Ref | Expression |
---|---|
isausgr | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (𝑉𝐺𝐸 ↔ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 476 | . . 3 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → 𝑒 = 𝐸) | |
2 | pweq 4194 | . . . . 5 ⊢ (𝑣 = 𝑉 → 𝒫 𝑣 = 𝒫 𝑉) | |
3 | 2 | adantr 480 | . . . 4 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → 𝒫 𝑣 = 𝒫 𝑉) |
4 | 3 | rabeqdv 3225 | . . 3 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → {𝑥 ∈ 𝒫 𝑣 ∣ (#‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2}) |
5 | 1, 4 | sseq12d 3667 | . 2 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (#‘𝑥) = 2} ↔ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2})) |
6 | ausgr.1 | . 2 ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (#‘𝑥) = 2}} | |
7 | 5, 6 | brabga 5018 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (𝑉𝐺𝐸 ↔ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {crab 2945 ⊆ wss 3607 𝒫 cpw 4191 class class class wbr 4685 {copab 4745 ‘cfv 5926 2c2 11108 #chash 13157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 |
This theorem is referenced by: ausgrusgrb 26105 usgrausgri 26106 ausgrumgri 26107 ausgrusgri 26108 |
Copyright terms: Public domain | W3C validator |