MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isbasisg Structured version   Visualization version   GIF version

Theorem isbasisg 20463
Description: Express the predicate "𝐵 is a basis for a topology." (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
isbasisg (𝐵𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
Distinct variable group:   𝑥,𝑦,𝐵
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem isbasisg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ineq1 3672 . . . . . 6 (𝑧 = 𝐵 → (𝑧 ∩ 𝒫 (𝑥𝑦)) = (𝐵 ∩ 𝒫 (𝑥𝑦)))
21unieqd 4280 . . . . 5 (𝑧 = 𝐵 (𝑧 ∩ 𝒫 (𝑥𝑦)) = (𝐵 ∩ 𝒫 (𝑥𝑦)))
32sseq2d 3500 . . . 4 (𝑧 = 𝐵 → ((𝑥𝑦) ⊆ (𝑧 ∩ 𝒫 (𝑥𝑦)) ↔ (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
43raleqbi1dv 3027 . . 3 (𝑧 = 𝐵 → (∀𝑦𝑧 (𝑥𝑦) ⊆ (𝑧 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
54raleqbi1dv 3027 . 2 (𝑧 = 𝐵 → (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ⊆ (𝑧 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
6 df-bases 20423 . 2 TopBases = {𝑧 ∣ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ⊆ (𝑧 ∩ 𝒫 (𝑥𝑦))}
75, 6elab2g 3226 1 (𝐵𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194   = wceq 1474  wcel 1938  wral 2800  cin 3443  wss 3444  𝒫 cpw 4011   cuni 4270  TopBasesctb 20421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494
This theorem depends on definitions:  df-bi 195  df-an 384  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ral 2805  df-rex 2806  df-v 3079  df-in 3451  df-ss 3458  df-uni 4271  df-bases 20423
This theorem is referenced by:  isbasis2g  20464  basis1  20466  basdif0  20469  baspartn  20470  basqtop  21225
  Copyright terms: Public domain W3C validator