Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbasisrelowl Structured version   Visualization version   GIF version

Theorem isbasisrelowl 33517
Description: The set of all closed-below, open-above intervals of reals form a basis. (Contributed by ML, 27-Jul-2020.)
Hypothesis
Ref Expression
isbasisrelowl.1 𝐼 = ([,) “ (ℝ × ℝ))
Assertion
Ref Expression
isbasisrelowl 𝐼 ∈ TopBases

Proof of Theorem isbasisrelowl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbasisrelowl.1 . . 3 𝐼 = ([,) “ (ℝ × ℝ))
2 df-ico 12374 . . . . 5 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
32ixxex 12379 . . . 4 [,) ∈ V
4 imaexg 7268 . . . 4 ([,) ∈ V → ([,) “ (ℝ × ℝ)) ∈ V)
53, 4ax-mp 5 . . 3 ([,) “ (ℝ × ℝ)) ∈ V
61, 5eqeltri 2835 . 2 𝐼 ∈ V
71icoreclin 33516 . . 3 ((𝑥𝐼𝑦𝐼) → (𝑥𝑦) ∈ 𝐼)
87rgen2a 3115 . 2 𝑥𝐼𝑦𝐼 (𝑥𝑦) ∈ 𝐼
9 fiinbas 20958 . 2 ((𝐼 ∈ V ∧ ∀𝑥𝐼𝑦𝐼 (𝑥𝑦) ∈ 𝐼) → 𝐼 ∈ TopBases)
106, 8, 9mp2an 710 1 𝐼 ∈ TopBases
Colors of variables: wff setvar class
Syntax hints:   = wceq 1632  wcel 2139  wral 3050  Vcvv 3340  cin 3714   × cxp 5264  cima 5269  cr 10127   < clt 10266  cle 10267  [,)cico 12370  TopBasesctb 20951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-pre-lttri 10202  ax-pre-lttrn 10203
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-ico 12374  df-bases 20952
This theorem is referenced by:  istoprelowl  33519
  Copyright terms: Public domain W3C validator