Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbasisrelowllem2 Structured version   Visualization version   GIF version

Theorem isbasisrelowllem2 34639
Description: Lemma for isbasisrelowl 34641. (Contributed by ML, 27-Jul-2020.)
Hypothesis
Ref Expression
isbasisrelowl.1 𝐼 = ([,) “ (ℝ × ℝ))
Assertion
Ref Expression
isbasisrelowllem2 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑥𝑦) ∈ 𝐼)
Distinct variable groups:   𝑧,𝑎   𝑧,𝑏   𝑐,𝑑,𝑥,𝑧   𝑦,𝑐,𝑑,𝑧
Allowed substitution hints:   𝐼(𝑥,𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem isbasisrelowllem2
StepHypRef Expression
1 simplr1 1211 . . . . 5 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → 𝑐 ∈ ℝ)
2 simplr2 1212 . . . . . . . 8 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → 𝑑 ∈ ℝ)
3 nfv 1915 . . . . . . . . . . . 12 𝑧 𝑎 ∈ ℝ
4 nfv 1915 . . . . . . . . . . . 12 𝑧 𝑏 ∈ ℝ
5 nfrab1 3386 . . . . . . . . . . . . 13 𝑧{𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}
65nfeq2 2997 . . . . . . . . . . . 12 𝑧 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}
73, 4, 6nf3an 1902 . . . . . . . . . . 11 𝑧(𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})
8 nfv 1915 . . . . . . . . . . . 12 𝑧 𝑐 ∈ ℝ
9 nfv 1915 . . . . . . . . . . . 12 𝑧 𝑑 ∈ ℝ
10 nfrab1 3386 . . . . . . . . . . . . 13 𝑧{𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}
1110nfeq2 2997 . . . . . . . . . . . 12 𝑧 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}
128, 9, 11nf3an 1902 . . . . . . . . . . 11 𝑧(𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})
137, 12nfan 1900 . . . . . . . . . 10 𝑧((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
14 nfv 1915 . . . . . . . . . 10 𝑧(𝑎𝑐𝑑𝑏)
1513, 14nfan 1900 . . . . . . . . 9 𝑧(((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏))
16 nfcv 2979 . . . . . . . . 9 𝑧(𝑥𝑦)
17 simp3 1134 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) → 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})
18 simp3 1134 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})
19 elin 4171 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝑥𝑦) ↔ (𝑧𝑥𝑧𝑦))
20 eleq2 2903 . . . . . . . . . . . . . . . . . . 19 (𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} → (𝑧𝑥𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}))
21 rabid 3380 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} ↔ (𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)))
2220, 21syl6bb 289 . . . . . . . . . . . . . . . . . 18 (𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} → (𝑧𝑥 ↔ (𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏))))
2322anbi1d 631 . . . . . . . . . . . . . . . . 17 (𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} → ((𝑧𝑥𝑧𝑦) ↔ ((𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)) ∧ 𝑧𝑦)))
2419, 23syl5bb 285 . . . . . . . . . . . . . . . 16 (𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} → (𝑧 ∈ (𝑥𝑦) ↔ ((𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)) ∧ 𝑧𝑦)))
25 eleq2 2903 . . . . . . . . . . . . . . . . . 18 (𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)} → (𝑧𝑦𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
26 rabid 3380 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)} ↔ (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑)))
2725, 26syl6bb 289 . . . . . . . . . . . . . . . . 17 (𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)} → (𝑧𝑦 ↔ (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑))))
2827anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)} → (((𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)) ∧ 𝑧𝑦) ↔ ((𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑)))))
2924, 28sylan9bb 512 . . . . . . . . . . . . . . 15 ((𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑧 ∈ (𝑥𝑦) ↔ ((𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑)))))
30 an4 654 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑))) ↔ ((𝑧 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑))))
31 anidm 567 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ ∧ 𝑧 ∈ ℝ) ↔ 𝑧 ∈ ℝ)
3231anbi1i 625 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑))) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑))))
3330, 32bitri 277 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑))) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑))))
34 an4 654 . . . . . . . . . . . . . . . . . . 19 (((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)) ↔ ((𝑎𝑧𝑐𝑧) ∧ (𝑧 < 𝑑𝑧 < 𝑏)))
35 an42 655 . . . . . . . . . . . . . . . . . . . 20 (((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑)) ↔ ((𝑎𝑧𝑐𝑧) ∧ (𝑧 < 𝑑𝑧 < 𝑏)))
3635bicomi 226 . . . . . . . . . . . . . . . . . . 19 (((𝑎𝑧𝑐𝑧) ∧ (𝑧 < 𝑑𝑧 < 𝑏)) ↔ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑)))
3734, 36bitri 277 . . . . . . . . . . . . . . . . . 18 (((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)) ↔ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑)))
3837bicomi 226 . . . . . . . . . . . . . . . . 17 (((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑)) ↔ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)))
3938anbi2i 624 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑))) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))))
4033, 39bitri 277 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑))) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))))
4129, 40syl6bb 289 . . . . . . . . . . . . . 14 ((𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑧 ∈ (𝑥𝑦) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)))))
4217, 18, 41syl2an 597 . . . . . . . . . . . . 13 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → (𝑧 ∈ (𝑥𝑦) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)))))
4342adantr 483 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑧 ∈ (𝑥𝑦) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)))))
44 simpl 485 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))) → 𝑧 ∈ ℝ)
45 simprrl 779 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))) → 𝑐𝑧)
46 simprlr 778 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))) → 𝑧 < 𝑑)
4744, 45, 46jca32 518 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))) → (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑)))
4843, 47syl6bi 255 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑧 ∈ (𝑥𝑦) → (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑))))
49 3simpa 1144 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ))
50 3simpa 1144 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ))
5149, 50anim12i 614 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)))
52 letr 10736 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑎𝑐𝑐𝑧) → 𝑎𝑧))
53523expia 1117 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑧 ∈ ℝ → ((𝑎𝑐𝑐𝑧) → 𝑎𝑧)))
5453exp4a 434 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑧 ∈ ℝ → (𝑎𝑐 → (𝑐𝑧𝑎𝑧))))
5554ad2ant2r 745 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑧 ∈ ℝ → (𝑎𝑐 → (𝑐𝑧𝑎𝑧))))
56 ltletr 10734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((𝑧 < 𝑑𝑑𝑏) → 𝑧 < 𝑏))
57563com13 1120 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑧 < 𝑑𝑑𝑏) → 𝑧 < 𝑏))
5857expcomd 419 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑑𝑏 → (𝑧 < 𝑑𝑧 < 𝑏)))
59583expia 1117 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑧 ∈ ℝ → (𝑑𝑏 → (𝑧 < 𝑑𝑧 < 𝑏))))
6059ad2ant2l 744 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑧 ∈ ℝ → (𝑑𝑏 → (𝑧 < 𝑑𝑧 < 𝑏))))
6155, 60jcad 515 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑧 ∈ ℝ → ((𝑎𝑐 → (𝑐𝑧𝑎𝑧)) ∧ (𝑑𝑏 → (𝑧 < 𝑑𝑧 < 𝑏)))))
62 anim12 807 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎𝑐 → (𝑐𝑧𝑎𝑧)) ∧ (𝑑𝑏 → (𝑧 < 𝑑𝑧 < 𝑏))) → ((𝑎𝑐𝑑𝑏) → ((𝑐𝑧𝑎𝑧) ∧ (𝑧 < 𝑑𝑧 < 𝑏))))
6361, 62syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑧 ∈ ℝ → ((𝑎𝑐𝑑𝑏) → ((𝑐𝑧𝑎𝑧) ∧ (𝑧 < 𝑑𝑧 < 𝑏)))))
6463com23 86 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → ((𝑎𝑐𝑑𝑏) → (𝑧 ∈ ℝ → ((𝑐𝑧𝑎𝑧) ∧ (𝑧 < 𝑑𝑧 < 𝑏)))))
65 anim12 807 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑐𝑧𝑎𝑧) ∧ (𝑧 < 𝑑𝑧 < 𝑏)) → ((𝑐𝑧𝑧 < 𝑑) → (𝑎𝑧𝑧 < 𝑏)))
6664, 65syl8 76 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → ((𝑎𝑐𝑑𝑏) → (𝑧 ∈ ℝ → ((𝑐𝑧𝑧 < 𝑑) → (𝑎𝑧𝑧 < 𝑏)))))
6766imp31 420 . . . . . . . . . . . . . . . . . . . 20 (((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑎𝑐𝑑𝑏)) ∧ 𝑧 ∈ ℝ) → ((𝑐𝑧𝑧 < 𝑑) → (𝑎𝑧𝑧 < 𝑏)))
6867ancrd 554 . . . . . . . . . . . . . . . . . . 19 (((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑎𝑐𝑑𝑏)) ∧ 𝑧 ∈ ℝ) → ((𝑐𝑧𝑧 < 𝑑) → ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑))))
69 an42 655 . . . . . . . . . . . . . . . . . . . 20 (((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)) ↔ ((𝑎𝑧𝑐𝑧) ∧ (𝑧 < 𝑏𝑧 < 𝑑)))
70 an4 654 . . . . . . . . . . . . . . . . . . . 20 (((𝑎𝑧𝑐𝑧) ∧ (𝑧 < 𝑏𝑧 < 𝑑)) ↔ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑)))
7169, 70bitri 277 . . . . . . . . . . . . . . . . . . 19 (((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)) ↔ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑)))
7268, 71syl6ibr 254 . . . . . . . . . . . . . . . . . 18 (((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑎𝑐𝑑𝑏)) ∧ 𝑧 ∈ ℝ) → ((𝑐𝑧𝑧 < 𝑑) → ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))))
73 simpr 487 . . . . . . . . . . . . . . . . . 18 (((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑎𝑐𝑑𝑏)) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
7472, 73jctild 528 . . . . . . . . . . . . . . . . 17 (((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑎𝑐𝑑𝑏)) ∧ 𝑧 ∈ ℝ) → ((𝑐𝑧𝑧 < 𝑑) → (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)))))
7551, 74sylanl1 678 . . . . . . . . . . . . . . . 16 (((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) ∧ 𝑧 ∈ ℝ) → ((𝑐𝑧𝑧 < 𝑑) → (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)))))
7675imp 409 . . . . . . . . . . . . . . 15 ((((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) ∧ 𝑧 ∈ ℝ) ∧ (𝑐𝑧𝑧 < 𝑑)) → (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))))
7776an32s 650 . . . . . . . . . . . . . 14 ((((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) ∧ (𝑐𝑧𝑧 < 𝑑)) ∧ 𝑧 ∈ ℝ) → (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))))
7843adantr 483 . . . . . . . . . . . . . . 15 (((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) ∧ (𝑐𝑧𝑧 < 𝑑)) → (𝑧 ∈ (𝑥𝑦) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)))))
7978adantr 483 . . . . . . . . . . . . . 14 ((((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) ∧ (𝑐𝑧𝑧 < 𝑑)) ∧ 𝑧 ∈ ℝ) → (𝑧 ∈ (𝑥𝑦) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)))))
8077, 79mpbird 259 . . . . . . . . . . . . 13 ((((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) ∧ (𝑐𝑧𝑧 < 𝑑)) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ (𝑥𝑦))
8180expl 460 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (((𝑐𝑧𝑧 < 𝑑) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ (𝑥𝑦)))
8281ancomsd 468 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → ((𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑)) → 𝑧 ∈ (𝑥𝑦)))
8348, 82impbid 214 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑧 ∈ (𝑥𝑦) ↔ (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑))))
8483, 26syl6bbr 291 . . . . . . . . 9 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑧 ∈ (𝑥𝑦) ↔ 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
8515, 16, 10, 84eqrd 3988 . . . . . . . 8 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})
862, 85jca 514 . . . . . . 7 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑑 ∈ ℝ ∧ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
878619.8ad 2181 . . . . . 6 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → ∃𝑑(𝑑 ∈ ℝ ∧ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
88 df-rex 3146 . . . . . 6 (∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)} ↔ ∃𝑑(𝑑 ∈ ℝ ∧ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
8987, 88sylibr 236 . . . . 5 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → ∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})
901, 89jca 514 . . . 4 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑐 ∈ ℝ ∧ ∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
919019.8ad 2181 . . 3 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → ∃𝑐(𝑐 ∈ ℝ ∧ ∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
92 df-rex 3146 . . 3 (∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)} ↔ ∃𝑐(𝑐 ∈ ℝ ∧ ∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
9391, 92sylibr 236 . 2 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → ∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})
94 isbasisrelowl.1 . . 3 𝐼 = ([,) “ (ℝ × ℝ))
9594icoreelrnab 34637 . 2 ((𝑥𝑦) ∈ 𝐼 ↔ ∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})
9693, 95sylibr 236 1 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑥𝑦) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wrex 3141  {crab 3144  cin 3937   class class class wbr 5068   × cxp 5555  cima 5560  cr 10538   < clt 10677  cle 10678  [,)cico 12743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-pre-lttri 10613  ax-pre-lttrn 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-ico 12747
This theorem is referenced by:  icoreclin  34640
  Copyright terms: Public domain W3C validator