Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbnd3 Structured version   Visualization version   GIF version

Theorem isbnd3 35056
Description: A metric space is bounded iff the metric function maps to some bounded real interval. (Contributed by Mario Carneiro, 13-Sep-2015.)
Assertion
Ref Expression
isbnd3 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑋

Proof of Theorem isbnd3
Dummy variables 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bndmet 35053 . . 3 (𝑀 ∈ (Bnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))
2 0re 10637 . . . . . 6 0 ∈ ℝ
32ne0ii 4303 . . . . 5 ℝ ≠ ∅
4 metf 22934 . . . . . . . . . 10 (𝑀 ∈ (Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
54ffnd 6510 . . . . . . . . 9 (𝑀 ∈ (Met‘𝑋) → 𝑀 Fn (𝑋 × 𝑋))
61, 5syl 17 . . . . . . . 8 (𝑀 ∈ (Bnd‘𝑋) → 𝑀 Fn (𝑋 × 𝑋))
76ad2antrr 724 . . . . . . 7 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → 𝑀 Fn (𝑋 × 𝑋))
81, 4syl 17 . . . . . . . . . . . 12 (𝑀 ∈ (Bnd‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
98fdmd 6518 . . . . . . . . . . 11 (𝑀 ∈ (Bnd‘𝑋) → dom 𝑀 = (𝑋 × 𝑋))
10 xpeq2 5571 . . . . . . . . . . . 12 (𝑋 = ∅ → (𝑋 × 𝑋) = (𝑋 × ∅))
11 xp0 6010 . . . . . . . . . . . 12 (𝑋 × ∅) = ∅
1210, 11syl6eq 2872 . . . . . . . . . . 11 (𝑋 = ∅ → (𝑋 × 𝑋) = ∅)
139, 12sylan9eq 2876 . . . . . . . . . 10 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) → dom 𝑀 = ∅)
1413adantr 483 . . . . . . . . 9 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → dom 𝑀 = ∅)
15 dm0rn0 5790 . . . . . . . . 9 (dom 𝑀 = ∅ ↔ ran 𝑀 = ∅)
1614, 15sylib 220 . . . . . . . 8 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → ran 𝑀 = ∅)
17 0ss 4350 . . . . . . . 8 ∅ ⊆ (0[,]𝑥)
1816, 17eqsstrdi 4021 . . . . . . 7 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → ran 𝑀 ⊆ (0[,]𝑥))
19 df-f 6354 . . . . . . 7 (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ran 𝑀 ⊆ (0[,]𝑥)))
207, 18, 19sylanbrc 585 . . . . . 6 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
2120ralrimiva 3182 . . . . 5 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) → ∀𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
22 r19.2z 4440 . . . . 5 ((ℝ ≠ ∅ ∧ ∀𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
233, 21, 22sylancr 589 . . . 4 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
24 isbnd2 35055 . . . . . 6 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)))
2524simprbi 499 . . . . 5 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) → ∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))
26 2re 11705 . . . . . . . . . . 11 2 ∈ ℝ
27 simprlr 778 . . . . . . . . . . . 12 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑟 ∈ ℝ+)
2827rpred 12425 . . . . . . . . . . 11 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑟 ∈ ℝ)
29 remulcl 10616 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (2 · 𝑟) ∈ ℝ)
3026, 28, 29sylancr 589 . . . . . . . . . 10 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → (2 · 𝑟) ∈ ℝ)
315adantr 483 . . . . . . . . . . 11 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑀 Fn (𝑋 × 𝑋))
32 simpll 765 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑀 ∈ (Met‘𝑋))
33 simprl 769 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑥𝑋)
34 simprr 771 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑧𝑋)
35 metcl 22936 . . . . . . . . . . . . . 14 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑧𝑋) → (𝑥𝑀𝑧) ∈ ℝ)
3632, 33, 34, 35syl3anc 1367 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ∈ ℝ)
37 metge0 22949 . . . . . . . . . . . . . 14 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑧𝑋) → 0 ≤ (𝑥𝑀𝑧))
3832, 33, 34, 37syl3anc 1367 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 0 ≤ (𝑥𝑀𝑧))
3930adantr 483 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (2 · 𝑟) ∈ ℝ)
40 simprll 777 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑦𝑋)
4140adantr 483 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑦𝑋)
42 metcl 22936 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋𝑥𝑋) → (𝑦𝑀𝑥) ∈ ℝ)
4332, 41, 33, 42syl3anc 1367 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑦𝑀𝑥) ∈ ℝ)
44 metcl 22936 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋𝑧𝑋) → (𝑦𝑀𝑧) ∈ ℝ)
4532, 41, 34, 44syl3anc 1367 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑦𝑀𝑧) ∈ ℝ)
4643, 45readdcld 10664 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)) ∈ ℝ)
47 mettri2 22945 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦𝑋𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ≤ ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)))
4832, 41, 33, 34, 47syl13anc 1368 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ≤ ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)))
4928adantr 483 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑟 ∈ ℝ)
50 simplrr 776 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑋 = (𝑦(ball‘𝑀)𝑟))
5133, 50eleqtrd 2915 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑥 ∈ (𝑦(ball‘𝑀)𝑟))
52 metxmet 22938 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋))
5332, 52syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑀 ∈ (∞Met‘𝑋))
54 rpxr 12392 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
5554ad2antlr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → 𝑟 ∈ ℝ*)
5655ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑟 ∈ ℝ*)
57 elbl2 22994 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑟 ∈ ℝ*) ∧ (𝑦𝑋𝑥𝑋)) → (𝑥 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑥) < 𝑟))
5853, 56, 41, 33, 57syl22anc 836 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑥) < 𝑟))
5951, 58mpbid 234 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑦𝑀𝑥) < 𝑟)
6034, 50eleqtrd 2915 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑧 ∈ (𝑦(ball‘𝑀)𝑟))
61 elbl2 22994 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑟 ∈ ℝ*) ∧ (𝑦𝑋𝑧𝑋)) → (𝑧 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑧) < 𝑟))
6253, 56, 41, 34, 61syl22anc 836 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑧 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑧) < 𝑟))
6360, 62mpbid 234 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑦𝑀𝑧) < 𝑟)
6443, 45, 49, 49, 59, 63lt2addd 11257 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)) < (𝑟 + 𝑟))
6549recnd 10663 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑟 ∈ ℂ)
66652timesd 11874 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (2 · 𝑟) = (𝑟 + 𝑟))
6764, 66breqtrrd 5087 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)) < (2 · 𝑟))
6836, 46, 39, 48, 67lelttrd 10792 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) < (2 · 𝑟))
6936, 39, 68ltled 10782 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ≤ (2 · 𝑟))
70 elicc2 12795 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (2 · 𝑟) ∈ ℝ) → ((𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)) ↔ ((𝑥𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑥𝑀𝑧) ∧ (𝑥𝑀𝑧) ≤ (2 · 𝑟))))
712, 39, 70sylancr 589 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → ((𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)) ↔ ((𝑥𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑥𝑀𝑧) ∧ (𝑥𝑀𝑧) ≤ (2 · 𝑟))))
7236, 38, 69, 71mpbir3and 1338 . . . . . . . . . . . 12 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)))
7372ralrimivva 3191 . . . . . . . . . . 11 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → ∀𝑥𝑋𝑧𝑋 (𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)))
74 ffnov 7272 . . . . . . . . . . 11 (𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟)) ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ∀𝑥𝑋𝑧𝑋 (𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟))))
7531, 73, 74sylanbrc 585 . . . . . . . . . 10 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟)))
76 oveq2 7158 . . . . . . . . . . . 12 (𝑥 = (2 · 𝑟) → (0[,]𝑥) = (0[,](2 · 𝑟)))
7776feq3d 6496 . . . . . . . . . . 11 (𝑥 = (2 · 𝑟) → (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ 𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟))))
7877rspcev 3623 . . . . . . . . . 10 (((2 · 𝑟) ∈ ℝ ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟))) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
7930, 75, 78syl2anc 586 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
8079expr 459 . . . . . . . 8 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦𝑋𝑟 ∈ ℝ+)) → (𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
8180rexlimdvva 3294 . . . . . . 7 (𝑀 ∈ (Met‘𝑋) → (∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
821, 81syl 17 . . . . . 6 (𝑀 ∈ (Bnd‘𝑋) → (∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
8382adantr 483 . . . . 5 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) → (∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
8425, 83mpd 15 . . . 4 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
8523, 84pm2.61dane 3104 . . 3 (𝑀 ∈ (Bnd‘𝑋) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
861, 85jca 514 . 2 (𝑀 ∈ (Bnd‘𝑋) → (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
87 simpll 765 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → 𝑀 ∈ (Met‘𝑋))
88 simpllr 774 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑥 ∈ ℝ)
8987adantr 483 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑀 ∈ (Met‘𝑋))
90 simpr 487 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑦𝑋)
91 met0 22947 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) → (𝑦𝑀𝑦) = 0)
9289, 90, 91syl2anc 586 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑦𝑀𝑦) = 0)
93 simplr 767 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
9493, 90, 90fovrnd 7314 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑦𝑀𝑦) ∈ (0[,]𝑥))
95 elicc2 12795 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝑀𝑦) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑦) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑦) ∧ (𝑦𝑀𝑦) ≤ 𝑥)))
962, 88, 95sylancr 589 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ((𝑦𝑀𝑦) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑦) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑦) ∧ (𝑦𝑀𝑦) ≤ 𝑥)))
9794, 96mpbid 234 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ((𝑦𝑀𝑦) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑦) ∧ (𝑦𝑀𝑦) ≤ 𝑥))
9897simp3d 1140 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑦𝑀𝑦) ≤ 𝑥)
9992, 98eqbrtrrd 5083 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 0 ≤ 𝑥)
10088, 99ge0p1rpd 12455 . . . . . 6 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑥 + 1) ∈ ℝ+)
101 fovrn 7312 . . . . . . . . . . . . . 14 ((𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ∧ 𝑦𝑋𝑧𝑋) → (𝑦𝑀𝑧) ∈ (0[,]𝑥))
1021013expa 1114 . . . . . . . . . . . . 13 (((𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) ∈ (0[,]𝑥))
103102adantlll 716 . . . . . . . . . . . 12 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) ∈ (0[,]𝑥))
104 elicc2 12795 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥)))
1052, 88, 104sylancr 589 . . . . . . . . . . . . 13 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥)))
106105adantr 483 . . . . . . . . . . . 12 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥)))
107103, 106mpbid 234 . . . . . . . . . . 11 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥))
108107simp1d 1138 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) ∈ ℝ)
10988adantr 483 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → 𝑥 ∈ ℝ)
110 peano2re 10807 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
11188, 110syl 17 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑥 + 1) ∈ ℝ)
112111adantr 483 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑥 + 1) ∈ ℝ)
113107simp3d 1140 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) ≤ 𝑥)
114109ltp1d 11564 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → 𝑥 < (𝑥 + 1))
115108, 109, 112, 113, 114lelttrd 10792 . . . . . . . . 9 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) < (𝑥 + 1))
116115ralrimiva 3182 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ∀𝑧𝑋 (𝑦𝑀𝑧) < (𝑥 + 1))
117 rabid2 3382 . . . . . . . 8 (𝑋 = {𝑧𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)} ↔ ∀𝑧𝑋 (𝑦𝑀𝑧) < (𝑥 + 1))
118116, 117sylibr 236 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑋 = {𝑧𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)})
11989, 52syl 17 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑀 ∈ (∞Met‘𝑋))
120111rexrd 10685 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑥 + 1) ∈ ℝ*)
121 blval 22990 . . . . . . . 8 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ (𝑥 + 1) ∈ ℝ*) → (𝑦(ball‘𝑀)(𝑥 + 1)) = {𝑧𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)})
122119, 90, 120, 121syl3anc 1367 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑦(ball‘𝑀)(𝑥 + 1)) = {𝑧𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)})
123118, 122eqtr4d 2859 . . . . . 6 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑋 = (𝑦(ball‘𝑀)(𝑥 + 1)))
124 oveq2 7158 . . . . . . 7 (𝑟 = (𝑥 + 1) → (𝑦(ball‘𝑀)𝑟) = (𝑦(ball‘𝑀)(𝑥 + 1)))
125124rspceeqv 3638 . . . . . 6 (((𝑥 + 1) ∈ ℝ+𝑋 = (𝑦(ball‘𝑀)(𝑥 + 1))) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))
126100, 123, 125syl2anc 586 . . . . 5 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))
127126ralrimiva 3182 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))
128 isbnd 35052 . . . 4 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)))
12987, 127, 128sylanbrc 585 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → 𝑀 ∈ (Bnd‘𝑋))
130129r19.29an 3288 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → 𝑀 ∈ (Bnd‘𝑋))
13186, 130impbii 211 1 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  {crab 3142  wss 3936  c0 4291   class class class wbr 5059   × cxp 5548  dom cdm 5550  ran crn 5551   Fn wfn 6345  wf 6346  cfv 6350  (class class class)co 7150  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  *cxr 10668   < clt 10669  cle 10670  2c2 11686  +crp 12383  [,]cicc 12735  ∞Metcxmet 20524  Metcmet 20525  ballcbl 20526  Bndcbnd 35039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-po 5469  df-so 5470  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-er 8283  df-ec 8285  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-2 11694  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-icc 12739  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-bnd 35051
This theorem is referenced by:  isbnd3b  35057  prdsbnd  35065
  Copyright terms: Public domain W3C validator