Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscard3 Structured version   Visualization version   GIF version

Theorem iscard3 8860
 Description: Two ways to express the property of being a cardinal number. (Contributed by NM, 9-Nov-2003.)
Assertion
Ref Expression
iscard3 ((card‘𝐴) = 𝐴𝐴 ∈ (ω ∪ ran ℵ))

Proof of Theorem iscard3
StepHypRef Expression
1 cardon 8714 . . . . . . . . 9 (card‘𝐴) ∈ On
2 eleq1 2686 . . . . . . . . 9 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On))
31, 2mpbii 223 . . . . . . . 8 ((card‘𝐴) = 𝐴𝐴 ∈ On)
4 eloni 5692 . . . . . . . 8 (𝐴 ∈ On → Ord 𝐴)
53, 4syl 17 . . . . . . 7 ((card‘𝐴) = 𝐴 → Ord 𝐴)
6 ordom 7021 . . . . . . 7 Ord ω
7 ordtri2or 5781 . . . . . . 7 ((Ord 𝐴 ∧ Ord ω) → (𝐴 ∈ ω ∨ ω ⊆ 𝐴))
85, 6, 7sylancl 693 . . . . . 6 ((card‘𝐴) = 𝐴 → (𝐴 ∈ ω ∨ ω ⊆ 𝐴))
98ord 392 . . . . 5 ((card‘𝐴) = 𝐴 → (¬ 𝐴 ∈ ω → ω ⊆ 𝐴))
10 isinfcard 8859 . . . . . . 7 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ↔ 𝐴 ∈ ran ℵ)
1110biimpi 206 . . . . . 6 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 ∈ ran ℵ)
1211expcom 451 . . . . 5 ((card‘𝐴) = 𝐴 → (ω ⊆ 𝐴𝐴 ∈ ran ℵ))
139, 12syld 47 . . . 4 ((card‘𝐴) = 𝐴 → (¬ 𝐴 ∈ ω → 𝐴 ∈ ran ℵ))
1413orrd 393 . . 3 ((card‘𝐴) = 𝐴 → (𝐴 ∈ ω ∨ 𝐴 ∈ ran ℵ))
15 cardnn 8733 . . . 4 (𝐴 ∈ ω → (card‘𝐴) = 𝐴)
1610bicomi 214 . . . . 5 (𝐴 ∈ ran ℵ ↔ (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴))
1716simprbi 480 . . . 4 (𝐴 ∈ ran ℵ → (card‘𝐴) = 𝐴)
1815, 17jaoi 394 . . 3 ((𝐴 ∈ ω ∨ 𝐴 ∈ ran ℵ) → (card‘𝐴) = 𝐴)
1914, 18impbii 199 . 2 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ ω ∨ 𝐴 ∈ ran ℵ))
20 elun 3731 . 2 (𝐴 ∈ (ω ∪ ran ℵ) ↔ (𝐴 ∈ ω ∨ 𝐴 ∈ ran ℵ))
2119, 20bitr4i 267 1 ((card‘𝐴) = 𝐴𝐴 ∈ (ω ∪ ran ℵ))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 196   ∨ wo 383   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ∪ cun 3553   ⊆ wss 3555  ran crn 5075  Ord word 5681  Oncon0 5682  ‘cfv 5847  ωcom 7012  cardccrd 8705  ℵcale 8706 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-oi 8359  df-har 8407  df-card 8709  df-aleph 8710 This theorem is referenced by:  cardnum  8861  carduniima  8863  cardinfima  8864  cfpwsdom  9350  gch2  9441
 Copyright terms: Public domain W3C validator