MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscau Structured version   Visualization version   GIF version

Theorem iscau 23881
Description: Express the property "𝐹 is a Cauchy sequence of metric 𝐷". Part of Definition 1.4-3 of [Kreyszig] p. 28. The condition 𝐹 ⊆ (ℂ × 𝑋) allows us to use objects more general than sequences when convenient; see the comment in df-lm 21839. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
iscau (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝐹𝑘)(ball‘𝐷)𝑥))))
Distinct variable groups:   𝑥,𝑘,𝐷   𝑘,𝐹,𝑥   𝑘,𝑋,𝑥

Proof of Theorem iscau
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 caufval 23880 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (Cau‘𝐷) = {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)})
21eleq2d 2900 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)}))
3 reseq1 5849 . . . . . 6 (𝑓 = 𝐹 → (𝑓 ↾ (ℤ𝑘)) = (𝐹 ↾ (ℤ𝑘)))
4 eqidd 2824 . . . . . 6 (𝑓 = 𝐹 → (ℤ𝑘) = (ℤ𝑘))
5 fveq1 6671 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑘) = (𝐹𝑘))
65oveq1d 7173 . . . . . 6 (𝑓 = 𝐹 → ((𝑓𝑘)(ball‘𝐷)𝑥) = ((𝐹𝑘)(ball‘𝐷)𝑥))
73, 4, 6feq123d 6505 . . . . 5 (𝑓 = 𝐹 → ((𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥) ↔ (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝐹𝑘)(ball‘𝐷)𝑥)))
87rexbidv 3299 . . . 4 (𝑓 = 𝐹 → (∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥) ↔ ∃𝑘 ∈ ℤ (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝐹𝑘)(ball‘𝐷)𝑥)))
98ralbidv 3199 . . 3 (𝑓 = 𝐹 → (∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥) ↔ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝐹𝑘)(ball‘𝐷)𝑥)))
109elrab 3682 . 2 (𝐹 ∈ {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)} ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝐹𝑘)(ball‘𝐷)𝑥)))
112, 10syl6bb 289 1 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝐹𝑘)(ball‘𝐷)𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141  {crab 3144  cres 5559  wf 6353  cfv 6357  (class class class)co 7158  pm cpm 8409  cc 10537  cz 11984  cuz 12246  +crp 12392  ∞Metcxmet 20532  ballcbl 20534  Cauccau 23858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-map 8410  df-xr 10681  df-xmet 20540  df-cau 23861
This theorem is referenced by:  iscau2  23882  caufpm  23887  lmcau  23918
  Copyright terms: Public domain W3C validator