Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscgra Structured version   Visualization version   GIF version

Theorem iscgra 25618
 Description: Property for two angles ABC and DEF to be congruent. This is a modified version of the definition 11.3 of [Schwabhauser] p. 95. where the number of constructed points has been reduced to two. We chose this version rather than the textbook version because it is shorter and therefore simpler to work with. Theorem dfcgra2 25638 shows that those definitions are indeed equivalent. (Contributed by Thierry Arnoux, 31-Jul-2020.)
Hypotheses
Ref Expression
iscgra.p 𝑃 = (Base‘𝐺)
iscgra.i 𝐼 = (Itv‘𝐺)
iscgra.k 𝐾 = (hlG‘𝐺)
iscgra.g (𝜑𝐺 ∈ TarskiG)
iscgra.a (𝜑𝐴𝑃)
iscgra.b (𝜑𝐵𝑃)
iscgra.c (𝜑𝐶𝑃)
iscgra.d (𝜑𝐷𝑃)
iscgra.e (𝜑𝐸𝑃)
iscgra.f (𝜑𝐹𝑃)
Assertion
Ref Expression
iscgra (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐸,𝑦   𝑥,𝐹,𝑦   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝐼,𝑦   𝑥,𝑃,𝑦

Proof of Theorem iscgra
Dummy variables 𝑎 𝑏 𝑔 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑎 = ⟨“𝐴𝐵𝐶”⟩)
2 eqidd 2622 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑥 = 𝑥)
3 simpr 477 . . . . . . . . . 10 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑏 = ⟨“𝐷𝐸𝐹”⟩)
43fveq1d 6155 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑏‘1) = (⟨“𝐷𝐸𝐹”⟩‘1))
5 eqidd 2622 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑦 = 𝑦)
62, 4, 5s3eqd 13554 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → ⟨“𝑥(𝑏‘1)𝑦”⟩ = ⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩)
71, 6breq12d 4631 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩))
84fveq2d 6157 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝐾‘(𝑏‘1)) = (𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1)))
93fveq1d 6155 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑏‘0) = (⟨“𝐷𝐸𝐹”⟩‘0))
102, 8, 9breq123d 4632 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ↔ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0)))
113fveq1d 6155 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑏‘2) = (⟨“𝐷𝐸𝐹”⟩‘2))
125, 8, 11breq123d 4632 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑦(𝐾‘(𝑏‘1))(𝑏‘2) ↔ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2)))
137, 10, 123anbi123d 1396 . . . . . 6 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → ((𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2))))
14132rexbidv 3051 . . . . 5 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2))))
15 eqid 2621 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))}
1614, 15brab2a 5134 . . . 4 (⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))}⟨“𝐷𝐸𝐹”⟩ ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2))))
1716a1i 11 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))}⟨“𝐷𝐸𝐹”⟩ ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2)))))
18 eqidd 2622 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → 𝑥 = 𝑥)
19 iscgra.e . . . . . . . . . 10 (𝜑𝐸𝑃)
20 s3fv1 13581 . . . . . . . . . 10 (𝐸𝑃 → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
2119, 20syl 17 . . . . . . . . 9 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
2221adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
23 eqidd 2622 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → 𝑦 = 𝑦)
2418, 22, 23s3eqd 13554 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → ⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ = ⟨“𝑥𝐸𝑦”⟩)
2524breq2d 4630 . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩))
2622fveq2d 6157 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1)) = (𝐾𝐸))
27 iscgra.d . . . . . . . . 9 (𝜑𝐷𝑃)
28 s3fv0 13580 . . . . . . . . 9 (𝐷𝑃 → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
2927, 28syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
3029adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
3118, 26, 30breq123d 4632 . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ↔ 𝑥(𝐾𝐸)𝐷))
32 iscgra.f . . . . . . . . 9 (𝜑𝐹𝑃)
33 s3fv2 13582 . . . . . . . . 9 (𝐹𝑃 → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
3432, 33syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
3534adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
3623, 26, 35breq123d 4632 . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2) ↔ 𝑦(𝐾𝐸)𝐹))
3725, 31, 363anbi123d 1396 . . . . 5 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2)) ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
38372rexbidva 3050 . . . 4 (𝜑 → (∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2)) ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
3938anbi2d 739 . . 3 (𝜑 → (((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2))) ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹))))
4017, 39bitrd 268 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))}⟨“𝐷𝐸𝐹”⟩ ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹))))
41 iscgra.g . . . 4 (𝜑𝐺 ∈ TarskiG)
42 elex 3201 . . . 4 (𝐺 ∈ TarskiG → 𝐺 ∈ V)
43 iscgra.p . . . . . . . 8 𝑃 = (Base‘𝐺)
44 iscgra.k . . . . . . . 8 𝐾 = (hlG‘𝐺)
45 simpl 473 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑘 = 𝐾) → 𝑝 = 𝑃)
4645eqcomd 2627 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑘 = 𝐾) → 𝑃 = 𝑝)
4746oveq1d 6625 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑃𝑚 (0..^3)) = (𝑝𝑚 (0..^3)))
4847eleq2d 2684 . . . . . . . . . 10 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑎 ∈ (𝑃𝑚 (0..^3)) ↔ 𝑎 ∈ (𝑝𝑚 (0..^3))))
4947eleq2d 2684 . . . . . . . . . 10 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑏 ∈ (𝑃𝑚 (0..^3)) ↔ 𝑏 ∈ (𝑝𝑚 (0..^3))))
5048, 49anbi12d 746 . . . . . . . . 9 ((𝑝 = 𝑃𝑘 = 𝐾) → ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ↔ (𝑎 ∈ (𝑝𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑝𝑚 (0..^3)))))
51 simpr 477 . . . . . . . . . . . . . . 15 ((𝑝 = 𝑃𝑘 = 𝐾) → 𝑘 = 𝐾)
52 eqidd 2622 . . . . . . . . . . . . . . 15 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑏‘1) = (𝑏‘1))
5351, 52fveq12d 6159 . . . . . . . . . . . . . 14 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑘‘(𝑏‘1)) = (𝐾‘(𝑏‘1)))
5453breqd 4629 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ↔ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0)))
5553breqd 4629 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑦(𝑘‘(𝑏‘1))(𝑏‘2) ↔ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))
5654, 553anbi23d 1399 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑘 = 𝐾) → ((𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)) ↔ (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))))
5756bicomd 213 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑘 = 𝐾) → ((𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2))))
5846, 57rexeqbidv 3145 . . . . . . . . . 10 ((𝑝 = 𝑃𝑘 = 𝐾) → (∃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ ∃𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2))))
5946, 58rexeqbidv 3145 . . . . . . . . 9 ((𝑝 = 𝑃𝑘 = 𝐾) → (∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2))))
6050, 59anbi12d 746 . . . . . . . 8 ((𝑝 = 𝑃𝑘 = 𝐾) → (((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))) ↔ ((𝑎 ∈ (𝑝𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑝𝑚 (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))))
6143, 44, 60sbcie2s 15848 . . . . . . 7 (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑝𝑚 (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2))) ↔ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))))
6261opabbidv 4683 . . . . . 6 (𝑔 = 𝐺 → {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑝𝑚 (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
63 fveq2 6153 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (cgrG‘𝑔) = (cgrG‘𝐺))
6463breqd 4629 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ↔ 𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩))
65643anbi1d 1400 . . . . . . . . . 10 (𝑔 = 𝐺 → ((𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))))
6665rexbidv 3046 . . . . . . . . 9 (𝑔 = 𝐺 → (∃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ ∃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))))
6766rexbidv 3046 . . . . . . . 8 (𝑔 = 𝐺 → (∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))))
6867anbi2d 739 . . . . . . 7 (𝑔 = 𝐺 → (((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))) ↔ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))))
6968opabbidv 4683 . . . . . 6 (𝑔 = 𝐺 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
7062, 69eqtrd 2655 . . . . 5 (𝑔 = 𝐺 → {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑝𝑚 (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
71 df-cgra 25617 . . . . 5 cgrA = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑝𝑚 (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))})
72 ovex 6638 . . . . . . 7 (𝑃𝑚 (0..^3)) ∈ V
7372, 72xpex 6922 . . . . . 6 ((𝑃𝑚 (0..^3)) × (𝑃𝑚 (0..^3))) ∈ V
74 opabssxp 5159 . . . . . 6 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))} ⊆ ((𝑃𝑚 (0..^3)) × (𝑃𝑚 (0..^3)))
7573, 74ssexi 4768 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))} ∈ V
7670, 71, 75fvmpt 6244 . . . 4 (𝐺 ∈ V → (cgrA‘𝐺) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
7741, 42, 763syl 18 . . 3 (𝜑 → (cgrA‘𝐺) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
7877breqd 4629 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))}⟨“𝐷𝐸𝐹”⟩))
79 iscgra.a . . . . . . 7 (𝜑𝐴𝑃)
80 iscgra.b . . . . . . 7 (𝜑𝐵𝑃)
81 iscgra.c . . . . . . 7 (𝜑𝐶𝑃)
8279, 80, 81s3cld 13561 . . . . . 6 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
83 s3len 13583 . . . . . . 7 (#‘⟨“𝐴𝐵𝐶”⟩) = 3
8483a1i 11 . . . . . 6 (𝜑 → (#‘⟨“𝐴𝐵𝐶”⟩) = 3)
8582, 84jca 554 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (#‘⟨“𝐴𝐵𝐶”⟩) = 3))
86 fvex 6163 . . . . . . 7 (Base‘𝐺) ∈ V
8743, 86eqeltri 2694 . . . . . 6 𝑃 ∈ V
88 3nn0 11262 . . . . . 6 3 ∈ ℕ0
89 wrdmap 13283 . . . . . 6 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (#‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3))))
9087, 88, 89mp2an 707 . . . . 5 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (#‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)))
9185, 90sylib 208 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)))
9227, 19, 32s3cld 13561 . . . . . 6 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃)
93 s3len 13583 . . . . . . 7 (#‘⟨“𝐷𝐸𝐹”⟩) = 3
9493a1i 11 . . . . . 6 (𝜑 → (#‘⟨“𝐷𝐸𝐹”⟩) = 3)
9592, 94jca 554 . . . . 5 (𝜑 → (⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃 ∧ (#‘⟨“𝐷𝐸𝐹”⟩) = 3))
96 wrdmap 13283 . . . . . 6 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃 ∧ (#‘⟨“𝐷𝐸𝐹”⟩) = 3) ↔ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3))))
9787, 88, 96mp2an 707 . . . . 5 ((⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃 ∧ (#‘⟨“𝐷𝐸𝐹”⟩) = 3) ↔ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3)))
9895, 97sylib 208 . . . 4 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3)))
9991, 98jca 554 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3))))
10099biantrurd 529 . 2 (𝜑 → (∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹) ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹))))
10140, 78, 1003bitr4d 300 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∃wrex 2908  Vcvv 3189  [wsbc 3421   class class class wbr 4618  {copab 4677   × cxp 5077  ‘cfv 5852  (class class class)co 6610   ↑𝑚 cmap 7809  0cc0 9888  1c1 9889  2c2 11022  3c3 11023  ℕ0cn0 11244  ..^cfzo 12414  #chash 13065  Word cword 13238  ⟨“cs3 13532  Basecbs 15792  TarskiGcstrkg 25246  Itvcitv 25252  cgrGccgrg 25322  hlGchlg 25412  cgrAccgra 25616 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-fz 12277  df-fzo 12415  df-hash 13066  df-word 13246  df-concat 13248  df-s1 13249  df-s2 13538  df-s3 13539  df-cgra 25617 This theorem is referenced by:  iscgra1  25619  iscgrad  25620  cgrane1  25621  cgrane2  25622  cgrane3  25623  cgrane4  25624  cgrahl1  25625  cgrahl2  25626  cgracgr  25627  cgraswap  25629  cgracom  25631  cgratr  25632  cgrabtwn  25634  cgrahl  25635  sacgr  25639
 Copyright terms: Public domain W3C validator