MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscgra Structured version   Visualization version   GIF version

Theorem iscgra 26589
Description: Property for two angles ABC and DEF to be congruent. This is a modified version of the definition 11.3 of [Schwabhauser] p. 95. where the number of constructed points has been reduced to two. We chose this version rather than the textbook version because it is shorter and therefore simpler to work with. Theorem dfcgra2 26610 shows that those definitions are indeed equivalent. (Contributed by Thierry Arnoux, 31-Jul-2020.)
Hypotheses
Ref Expression
iscgra.p 𝑃 = (Base‘𝐺)
iscgra.i 𝐼 = (Itv‘𝐺)
iscgra.k 𝐾 = (hlG‘𝐺)
iscgra.g (𝜑𝐺 ∈ TarskiG)
iscgra.a (𝜑𝐴𝑃)
iscgra.b (𝜑𝐵𝑃)
iscgra.c (𝜑𝐶𝑃)
iscgra.d (𝜑𝐷𝑃)
iscgra.e (𝜑𝐸𝑃)
iscgra.f (𝜑𝐹𝑃)
Assertion
Ref Expression
iscgra (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐸,𝑦   𝑥,𝐹,𝑦   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝐼,𝑦   𝑥,𝑃,𝑦

Proof of Theorem iscgra
Dummy variables 𝑎 𝑏 𝑔 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 485 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑎 = ⟨“𝐴𝐵𝐶”⟩)
2 eqidd 2822 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑥 = 𝑥)
3 simpr 487 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑏 = ⟨“𝐷𝐸𝐹”⟩)
43fveq1d 6667 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑏‘1) = (⟨“𝐷𝐸𝐹”⟩‘1))
5 eqidd 2822 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑦 = 𝑦)
62, 4, 5s3eqd 14220 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → ⟨“𝑥(𝑏‘1)𝑦”⟩ = ⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩)
71, 6breq12d 5072 . . . . . 6 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩))
84fveq2d 6669 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝐾‘(𝑏‘1)) = (𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1)))
93fveq1d 6667 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑏‘0) = (⟨“𝐷𝐸𝐹”⟩‘0))
102, 8, 9breq123d 5073 . . . . . 6 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ↔ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0)))
113fveq1d 6667 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑏‘2) = (⟨“𝐷𝐸𝐹”⟩‘2))
125, 8, 11breq123d 5073 . . . . . 6 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑦(𝐾‘(𝑏‘1))(𝑏‘2) ↔ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2)))
137, 10, 123anbi123d 1432 . . . . 5 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → ((𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2))))
14132rexbidv 3300 . . . 4 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2))))
15 eqid 2821 . . . 4 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))}
1614, 15brab2a 5639 . . 3 (⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))}⟨“𝐷𝐸𝐹”⟩ ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2))))
17 eqidd 2822 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → 𝑥 = 𝑥)
18 iscgra.e . . . . . . . . . 10 (𝜑𝐸𝑃)
19 s3fv1 14248 . . . . . . . . . 10 (𝐸𝑃 → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
2018, 19syl 17 . . . . . . . . 9 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
2120adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
22 eqidd 2822 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → 𝑦 = 𝑦)
2317, 21, 22s3eqd 14220 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → ⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ = ⟨“𝑥𝐸𝑦”⟩)
2423breq2d 5071 . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩))
2521fveq2d 6669 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1)) = (𝐾𝐸))
26 iscgra.d . . . . . . . . 9 (𝜑𝐷𝑃)
27 s3fv0 14247 . . . . . . . . 9 (𝐷𝑃 → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
2826, 27syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
2928adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
3017, 25, 29breq123d 5073 . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ↔ 𝑥(𝐾𝐸)𝐷))
31 iscgra.f . . . . . . . . 9 (𝜑𝐹𝑃)
32 s3fv2 14249 . . . . . . . . 9 (𝐹𝑃 → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
3331, 32syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
3433adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
3522, 25, 34breq123d 5073 . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2) ↔ 𝑦(𝐾𝐸)𝐹))
3624, 30, 353anbi123d 1432 . . . . 5 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2)) ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
37362rexbidva 3299 . . . 4 (𝜑 → (∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2)) ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
3837anbi2d 630 . . 3 (𝜑 → (((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2))) ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹))))
3916, 38syl5bb 285 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))}⟨“𝐷𝐸𝐹”⟩ ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹))))
40 iscgra.g . . . 4 (𝜑𝐺 ∈ TarskiG)
41 elex 3513 . . . 4 (𝐺 ∈ TarskiG → 𝐺 ∈ V)
42 iscgra.p . . . . . . . 8 𝑃 = (Base‘𝐺)
43 iscgra.k . . . . . . . 8 𝐾 = (hlG‘𝐺)
44 simpl 485 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑘 = 𝐾) → 𝑝 = 𝑃)
4544eqcomd 2827 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑘 = 𝐾) → 𝑃 = 𝑝)
4645oveq1d 7165 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑃m (0..^3)) = (𝑝m (0..^3)))
4746eleq2d 2898 . . . . . . . . . 10 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑎 ∈ (𝑃m (0..^3)) ↔ 𝑎 ∈ (𝑝m (0..^3))))
4846eleq2d 2898 . . . . . . . . . 10 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑏 ∈ (𝑃m (0..^3)) ↔ 𝑏 ∈ (𝑝m (0..^3))))
4947, 48anbi12d 632 . . . . . . . . 9 ((𝑝 = 𝑃𝑘 = 𝐾) → ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ↔ (𝑎 ∈ (𝑝m (0..^3)) ∧ 𝑏 ∈ (𝑝m (0..^3)))))
50 simpr 487 . . . . . . . . . . . . . . 15 ((𝑝 = 𝑃𝑘 = 𝐾) → 𝑘 = 𝐾)
5150fveq1d 6667 . . . . . . . . . . . . . 14 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑘‘(𝑏‘1)) = (𝐾‘(𝑏‘1)))
5251breqd 5070 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ↔ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0)))
5351breqd 5070 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑦(𝑘‘(𝑏‘1))(𝑏‘2) ↔ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))
5452, 533anbi23d 1435 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑘 = 𝐾) → ((𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)) ↔ (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))))
5554bicomd 225 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑘 = 𝐾) → ((𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2))))
5645, 55rexeqbidv 3403 . . . . . . . . . 10 ((𝑝 = 𝑃𝑘 = 𝐾) → (∃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ ∃𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2))))
5745, 56rexeqbidv 3403 . . . . . . . . 9 ((𝑝 = 𝑃𝑘 = 𝐾) → (∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2))))
5849, 57anbi12d 632 . . . . . . . 8 ((𝑝 = 𝑃𝑘 = 𝐾) → (((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))) ↔ ((𝑎 ∈ (𝑝m (0..^3)) ∧ 𝑏 ∈ (𝑝m (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))))
5942, 43, 58sbcie2s 16534 . . . . . . 7 (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝m (0..^3)) ∧ 𝑏 ∈ (𝑝m (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2))) ↔ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))))
6059opabbidv 5125 . . . . . 6 (𝑔 = 𝐺 → {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝m (0..^3)) ∧ 𝑏 ∈ (𝑝m (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
61 fveq2 6665 . . . . . . . . . . 11 (𝑔 = 𝐺 → (cgrG‘𝑔) = (cgrG‘𝐺))
6261breqd 5070 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ↔ 𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩))
63623anbi1d 1436 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))))
64632rexbidv 3300 . . . . . . . 8 (𝑔 = 𝐺 → (∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))))
6564anbi2d 630 . . . . . . 7 (𝑔 = 𝐺 → (((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))) ↔ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))))
6665opabbidv 5125 . . . . . 6 (𝑔 = 𝐺 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
6760, 66eqtrd 2856 . . . . 5 (𝑔 = 𝐺 → {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝m (0..^3)) ∧ 𝑏 ∈ (𝑝m (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
68 df-cgra 26588 . . . . 5 cgrA = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝m (0..^3)) ∧ 𝑏 ∈ (𝑝m (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))})
69 ovex 7183 . . . . . . 7 (𝑃m (0..^3)) ∈ V
7069, 69xpex 7470 . . . . . 6 ((𝑃m (0..^3)) × (𝑃m (0..^3))) ∈ V
71 opabssxp 5638 . . . . . 6 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))} ⊆ ((𝑃m (0..^3)) × (𝑃m (0..^3)))
7270, 71ssexi 5219 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))} ∈ V
7367, 68, 72fvmpt 6763 . . . 4 (𝐺 ∈ V → (cgrA‘𝐺) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
7440, 41, 733syl 18 . . 3 (𝜑 → (cgrA‘𝐺) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
7574breqd 5070 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))}⟨“𝐷𝐸𝐹”⟩))
76 iscgra.a . . . . . 6 (𝜑𝐴𝑃)
77 iscgra.b . . . . . 6 (𝜑𝐵𝑃)
78 iscgra.c . . . . . 6 (𝜑𝐶𝑃)
7976, 77, 78s3cld 14228 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
80 s3len 14250 . . . . 5 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
8142fvexi 6679 . . . . . 6 𝑃 ∈ V
82 3nn0 11909 . . . . . 6 3 ∈ ℕ0
83 wrdmap 13891 . . . . . 6 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))))
8481, 82, 83mp2an 690 . . . . 5 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)))
8579, 80, 84sylanblc 591 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)))
8626, 18, 31s3cld 14228 . . . . 5 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃)
87 s3len 14250 . . . . 5 (♯‘⟨“𝐷𝐸𝐹”⟩) = 3
88 wrdmap 13891 . . . . . 6 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐷𝐸𝐹”⟩) = 3) ↔ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))))
8981, 82, 88mp2an 690 . . . . 5 ((⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐷𝐸𝐹”⟩) = 3) ↔ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3)))
9086, 87, 89sylanblc 591 . . . 4 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3)))
9185, 90jca 514 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))))
9291biantrurd 535 . 2 (𝜑 → (∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹) ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹))))
9339, 75, 923bitr4d 313 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wrex 3139  Vcvv 3495  [wsbc 3772   class class class wbr 5059  {copab 5121   × cxp 5548  cfv 6350  (class class class)co 7150  m cmap 8400  0cc0 10531  1c1 10532  2c2 11686  3c3 11687  0cn0 11891  ..^cfzo 13027  chash 13684  Word cword 13855  ⟨“cs3 14198  Basecbs 16477  TarskiGcstrkg 26210  Itvcitv 26216  cgrGccgrg 26290  hlGchlg 26380  cgrAccgra 26587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-concat 13917  df-s1 13944  df-s2 14204  df-s3 14205  df-cgra 26588
This theorem is referenced by:  iscgra1  26590  iscgrad  26591  cgrane1  26592  cgrane2  26593  cgrane3  26594  cgrane4  26595  cgrahl1  26596  cgrahl2  26597  cgracgr  26598  cgraswap  26600  cgracom  26602  cgratr  26603  flatcgra  26604  cgrabtwn  26606  cgrahl  26607  sacgr  26611
  Copyright terms: Public domain W3C validator