MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscldtop Structured version   Visualization version   GIF version

Theorem iscldtop 21706
Description: A family is the closed sets of a topology iff it is a Moore collection and closed under finite union. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
iscldtop (𝐾 ∈ (Clsd “ (TopOn‘𝐵)) ↔ (𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐾,𝑦

Proof of Theorem iscldtop
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fncld 21633 . . . . 5 Clsd Fn Top
2 fnfun 6456 . . . . 5 (Clsd Fn Top → Fun Clsd)
31, 2ax-mp 5 . . . 4 Fun Clsd
4 fvelima 6734 . . . 4 ((Fun Clsd ∧ 𝐾 ∈ (Clsd “ (TopOn‘𝐵))) → ∃𝑎 ∈ (TopOn‘𝐵)(Clsd‘𝑎) = 𝐾)
53, 4mpan 688 . . 3 (𝐾 ∈ (Clsd “ (TopOn‘𝐵)) → ∃𝑎 ∈ (TopOn‘𝐵)(Clsd‘𝑎) = 𝐾)
6 cldmreon 21705 . . . . . 6 (𝑎 ∈ (TopOn‘𝐵) → (Clsd‘𝑎) ∈ (Moore‘𝐵))
7 topontop 21524 . . . . . . 7 (𝑎 ∈ (TopOn‘𝐵) → 𝑎 ∈ Top)
8 0cld 21649 . . . . . . 7 (𝑎 ∈ Top → ∅ ∈ (Clsd‘𝑎))
97, 8syl 17 . . . . . 6 (𝑎 ∈ (TopOn‘𝐵) → ∅ ∈ (Clsd‘𝑎))
10 uncld 21652 . . . . . . . 8 ((𝑥 ∈ (Clsd‘𝑎) ∧ 𝑦 ∈ (Clsd‘𝑎)) → (𝑥𝑦) ∈ (Clsd‘𝑎))
1110adantl 484 . . . . . . 7 ((𝑎 ∈ (TopOn‘𝐵) ∧ (𝑥 ∈ (Clsd‘𝑎) ∧ 𝑦 ∈ (Clsd‘𝑎))) → (𝑥𝑦) ∈ (Clsd‘𝑎))
1211ralrimivva 3194 . . . . . 6 (𝑎 ∈ (TopOn‘𝐵) → ∀𝑥 ∈ (Clsd‘𝑎)∀𝑦 ∈ (Clsd‘𝑎)(𝑥𝑦) ∈ (Clsd‘𝑎))
136, 9, 123jca 1124 . . . . 5 (𝑎 ∈ (TopOn‘𝐵) → ((Clsd‘𝑎) ∈ (Moore‘𝐵) ∧ ∅ ∈ (Clsd‘𝑎) ∧ ∀𝑥 ∈ (Clsd‘𝑎)∀𝑦 ∈ (Clsd‘𝑎)(𝑥𝑦) ∈ (Clsd‘𝑎)))
14 eleq1 2903 . . . . . 6 ((Clsd‘𝑎) = 𝐾 → ((Clsd‘𝑎) ∈ (Moore‘𝐵) ↔ 𝐾 ∈ (Moore‘𝐵)))
15 eleq2 2904 . . . . . 6 ((Clsd‘𝑎) = 𝐾 → (∅ ∈ (Clsd‘𝑎) ↔ ∅ ∈ 𝐾))
16 eleq2 2904 . . . . . . . 8 ((Clsd‘𝑎) = 𝐾 → ((𝑥𝑦) ∈ (Clsd‘𝑎) ↔ (𝑥𝑦) ∈ 𝐾))
1716raleqbi1dv 3406 . . . . . . 7 ((Clsd‘𝑎) = 𝐾 → (∀𝑦 ∈ (Clsd‘𝑎)(𝑥𝑦) ∈ (Clsd‘𝑎) ↔ ∀𝑦𝐾 (𝑥𝑦) ∈ 𝐾))
1817raleqbi1dv 3406 . . . . . 6 ((Clsd‘𝑎) = 𝐾 → (∀𝑥 ∈ (Clsd‘𝑎)∀𝑦 ∈ (Clsd‘𝑎)(𝑥𝑦) ∈ (Clsd‘𝑎) ↔ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾))
1914, 15, 183anbi123d 1432 . . . . 5 ((Clsd‘𝑎) = 𝐾 → (((Clsd‘𝑎) ∈ (Moore‘𝐵) ∧ ∅ ∈ (Clsd‘𝑎) ∧ ∀𝑥 ∈ (Clsd‘𝑎)∀𝑦 ∈ (Clsd‘𝑎)(𝑥𝑦) ∈ (Clsd‘𝑎)) ↔ (𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾)))
2013, 19syl5ibcom 247 . . . 4 (𝑎 ∈ (TopOn‘𝐵) → ((Clsd‘𝑎) = 𝐾 → (𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾)))
2120rexlimiv 3283 . . 3 (∃𝑎 ∈ (TopOn‘𝐵)(Clsd‘𝑎) = 𝐾 → (𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾))
225, 21syl 17 . 2 (𝐾 ∈ (Clsd “ (TopOn‘𝐵)) → (𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾))
23 simp1 1132 . . . . 5 ((𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾) → 𝐾 ∈ (Moore‘𝐵))
24 simp2 1133 . . . . 5 ((𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾) → ∅ ∈ 𝐾)
25 uneq1 4135 . . . . . . . . . 10 (𝑥 = 𝑏 → (𝑥𝑦) = (𝑏𝑦))
2625eleq1d 2900 . . . . . . . . 9 (𝑥 = 𝑏 → ((𝑥𝑦) ∈ 𝐾 ↔ (𝑏𝑦) ∈ 𝐾))
27 uneq2 4136 . . . . . . . . . 10 (𝑦 = 𝑐 → (𝑏𝑦) = (𝑏𝑐))
2827eleq1d 2900 . . . . . . . . 9 (𝑦 = 𝑐 → ((𝑏𝑦) ∈ 𝐾 ↔ (𝑏𝑐) ∈ 𝐾))
2926, 28rspc2v 3636 . . . . . . . 8 ((𝑏𝐾𝑐𝐾) → (∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾 → (𝑏𝑐) ∈ 𝐾))
3029com12 32 . . . . . . 7 (∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾 → ((𝑏𝐾𝑐𝐾) → (𝑏𝑐) ∈ 𝐾))
31303ad2ant3 1131 . . . . . 6 ((𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾) → ((𝑏𝐾𝑐𝐾) → (𝑏𝑐) ∈ 𝐾))
32313impib 1112 . . . . 5 (((𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾) ∧ 𝑏𝐾𝑐𝐾) → (𝑏𝑐) ∈ 𝐾)
33 eqid 2824 . . . . 5 {𝑎 ∈ 𝒫 𝐵 ∣ (𝐵𝑎) ∈ 𝐾} = {𝑎 ∈ 𝒫 𝐵 ∣ (𝐵𝑎) ∈ 𝐾}
3423, 24, 32, 33mretopd 21703 . . . 4 ((𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾) → ({𝑎 ∈ 𝒫 𝐵 ∣ (𝐵𝑎) ∈ 𝐾} ∈ (TopOn‘𝐵) ∧ 𝐾 = (Clsd‘{𝑎 ∈ 𝒫 𝐵 ∣ (𝐵𝑎) ∈ 𝐾})))
3534simprd 498 . . 3 ((𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾) → 𝐾 = (Clsd‘{𝑎 ∈ 𝒫 𝐵 ∣ (𝐵𝑎) ∈ 𝐾}))
3634simpld 497 . . . 4 ((𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾) → {𝑎 ∈ 𝒫 𝐵 ∣ (𝐵𝑎) ∈ 𝐾} ∈ (TopOn‘𝐵))
377ssriv 3974 . . . . . 6 (TopOn‘𝐵) ⊆ Top
38 fndm 6458 . . . . . . 7 (Clsd Fn Top → dom Clsd = Top)
391, 38ax-mp 5 . . . . . 6 dom Clsd = Top
4037, 39sseqtrri 4007 . . . . 5 (TopOn‘𝐵) ⊆ dom Clsd
41 funfvima2 6996 . . . . 5 ((Fun Clsd ∧ (TopOn‘𝐵) ⊆ dom Clsd) → ({𝑎 ∈ 𝒫 𝐵 ∣ (𝐵𝑎) ∈ 𝐾} ∈ (TopOn‘𝐵) → (Clsd‘{𝑎 ∈ 𝒫 𝐵 ∣ (𝐵𝑎) ∈ 𝐾}) ∈ (Clsd “ (TopOn‘𝐵))))
423, 40, 41mp2an 690 . . . 4 ({𝑎 ∈ 𝒫 𝐵 ∣ (𝐵𝑎) ∈ 𝐾} ∈ (TopOn‘𝐵) → (Clsd‘{𝑎 ∈ 𝒫 𝐵 ∣ (𝐵𝑎) ∈ 𝐾}) ∈ (Clsd “ (TopOn‘𝐵)))
4336, 42syl 17 . . 3 ((𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾) → (Clsd‘{𝑎 ∈ 𝒫 𝐵 ∣ (𝐵𝑎) ∈ 𝐾}) ∈ (Clsd “ (TopOn‘𝐵)))
4435, 43eqeltrd 2916 . 2 ((𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾) → 𝐾 ∈ (Clsd “ (TopOn‘𝐵)))
4522, 44impbii 211 1 (𝐾 ∈ (Clsd “ (TopOn‘𝐵)) ↔ (𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wrex 3142  {crab 3145  cdif 3936  cun 3937  wss 3939  c0 4294  𝒫 cpw 4542  dom cdm 5558  cima 5561  Fun wfun 6352   Fn wfn 6353  cfv 6358  Moorecmre 16856  Topctop 21504  TopOnctopon 21521  Clsdccld 21627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-fv 6366  df-mre 16860  df-top 21505  df-topon 21522  df-cld 21630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator