Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclo2 Structured version   Visualization version   GIF version

Theorem isclo2 20940
 Description: A set 𝐴 is clopen iff for every point 𝑥 in the space there is a neighborhood 𝑦 of 𝑥 which is either disjoint from 𝐴 or contained in 𝐴. (Contributed by Mario Carneiro, 7-Jul-2015.)
Hypothesis
Ref Expression
isclo.1 𝑋 = 𝐽
Assertion
Ref Expression
isclo2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑧𝐴𝑦𝐴))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐽,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧

Proof of Theorem isclo2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 isclo.1 . . 3 𝑋 = 𝐽
21isclo 20939 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
3 eleq1 2718 . . . . . . . . . . 11 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
43bibi2d 331 . . . . . . . . . 10 (𝑧 = 𝑤 → ((𝑥𝐴𝑧𝐴) ↔ (𝑥𝐴𝑤𝐴)))
54cbvralv 3201 . . . . . . . . 9 (∀𝑧𝑦 (𝑥𝐴𝑧𝐴) ↔ ∀𝑤𝑦 (𝑥𝐴𝑤𝐴))
65anbi2i 730 . . . . . . . 8 ((∀𝑧𝑦 (𝑥𝐴𝑧𝐴) ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ↔ (∀𝑧𝑦 (𝑥𝐴𝑧𝐴) ∧ ∀𝑤𝑦 (𝑥𝐴𝑤𝐴)))
7 pm4.24 676 . . . . . . . 8 (∀𝑧𝑦 (𝑥𝐴𝑧𝐴) ↔ (∀𝑧𝑦 (𝑥𝐴𝑧𝐴) ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
8 raaanv 4116 . . . . . . . 8 (∀𝑧𝑦𝑤𝑦 ((𝑥𝐴𝑧𝐴) ∧ (𝑥𝐴𝑤𝐴)) ↔ (∀𝑧𝑦 (𝑥𝐴𝑧𝐴) ∧ ∀𝑤𝑦 (𝑥𝐴𝑤𝐴)))
96, 7, 83bitr4i 292 . . . . . . 7 (∀𝑧𝑦 (𝑥𝐴𝑧𝐴) ↔ ∀𝑧𝑦𝑤𝑦 ((𝑥𝐴𝑧𝐴) ∧ (𝑥𝐴𝑤𝐴)))
10 bibi1 340 . . . . . . . . . . . . 13 ((𝑥𝐴𝑧𝐴) → ((𝑥𝐴𝑤𝐴) ↔ (𝑧𝐴𝑤𝐴)))
1110biimpa 500 . . . . . . . . . . . 12 (((𝑥𝐴𝑧𝐴) ∧ (𝑥𝐴𝑤𝐴)) → (𝑧𝐴𝑤𝐴))
1211biimpcd 239 . . . . . . . . . . 11 (𝑧𝐴 → (((𝑥𝐴𝑧𝐴) ∧ (𝑥𝐴𝑤𝐴)) → 𝑤𝐴))
1312ralimdv 2992 . . . . . . . . . 10 (𝑧𝐴 → (∀𝑤𝑦 ((𝑥𝐴𝑧𝐴) ∧ (𝑥𝐴𝑤𝐴)) → ∀𝑤𝑦 𝑤𝐴))
1413com12 32 . . . . . . . . 9 (∀𝑤𝑦 ((𝑥𝐴𝑧𝐴) ∧ (𝑥𝐴𝑤𝐴)) → (𝑧𝐴 → ∀𝑤𝑦 𝑤𝐴))
15 dfss3 3625 . . . . . . . . 9 (𝑦𝐴 ↔ ∀𝑤𝑦 𝑤𝐴)
1614, 15syl6ibr 242 . . . . . . . 8 (∀𝑤𝑦 ((𝑥𝐴𝑧𝐴) ∧ (𝑥𝐴𝑤𝐴)) → (𝑧𝐴𝑦𝐴))
1716ralimi 2981 . . . . . . 7 (∀𝑧𝑦𝑤𝑦 ((𝑥𝐴𝑧𝐴) ∧ (𝑥𝐴𝑤𝐴)) → ∀𝑧𝑦 (𝑧𝐴𝑦𝐴))
189, 17sylbi 207 . . . . . 6 (∀𝑧𝑦 (𝑥𝐴𝑧𝐴) → ∀𝑧𝑦 (𝑧𝐴𝑦𝐴))
19 eleq1 2718 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
2019imbi1d 330 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝑧𝐴𝑦𝐴) ↔ (𝑥𝐴𝑦𝐴)))
2120rspcv 3336 . . . . . . . . 9 (𝑥𝑦 → (∀𝑧𝑦 (𝑧𝐴𝑦𝐴) → (𝑥𝐴𝑦𝐴)))
22 dfss3 3625 . . . . . . . . . . 11 (𝑦𝐴 ↔ ∀𝑧𝑦 𝑧𝐴)
2322imbi2i 325 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴) ↔ (𝑥𝐴 → ∀𝑧𝑦 𝑧𝐴))
24 r19.21v 2989 . . . . . . . . . 10 (∀𝑧𝑦 (𝑥𝐴𝑧𝐴) ↔ (𝑥𝐴 → ∀𝑧𝑦 𝑧𝐴))
2523, 24bitr4i 267 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴) ↔ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))
2621, 25syl6ib 241 . . . . . . . 8 (𝑥𝑦 → (∀𝑧𝑦 (𝑧𝐴𝑦𝐴) → ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
27 ssel 3630 . . . . . . . . . . 11 (𝑦𝐴 → (𝑥𝑦𝑥𝐴))
2827com12 32 . . . . . . . . . 10 (𝑥𝑦 → (𝑦𝐴𝑥𝐴))
2928imim2d 57 . . . . . . . . 9 (𝑥𝑦 → ((𝑧𝐴𝑦𝐴) → (𝑧𝐴𝑥𝐴)))
3029ralimdv 2992 . . . . . . . 8 (𝑥𝑦 → (∀𝑧𝑦 (𝑧𝐴𝑦𝐴) → ∀𝑧𝑦 (𝑧𝐴𝑥𝐴)))
3126, 30jcad 554 . . . . . . 7 (𝑥𝑦 → (∀𝑧𝑦 (𝑧𝐴𝑦𝐴) → (∀𝑧𝑦 (𝑥𝐴𝑧𝐴) ∧ ∀𝑧𝑦 (𝑧𝐴𝑥𝐴))))
32 ralbiim 3098 . . . . . . 7 (∀𝑧𝑦 (𝑥𝐴𝑧𝐴) ↔ (∀𝑧𝑦 (𝑥𝐴𝑧𝐴) ∧ ∀𝑧𝑦 (𝑧𝐴𝑥𝐴)))
3331, 32syl6ibr 242 . . . . . 6 (𝑥𝑦 → (∀𝑧𝑦 (𝑧𝐴𝑦𝐴) → ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
3418, 33impbid2 216 . . . . 5 (𝑥𝑦 → (∀𝑧𝑦 (𝑥𝐴𝑧𝐴) ↔ ∀𝑧𝑦 (𝑧𝐴𝑦𝐴)))
3534pm5.32i 670 . . . 4 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑧𝐴𝑦𝐴)))
3635rexbii 3070 . . 3 (∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ↔ ∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑧𝐴𝑦𝐴)))
3736ralbii 3009 . 2 (∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑧𝐴𝑦𝐴)))
382, 37syl6bb 276 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑧𝐴𝑦𝐴))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942   ∩ cin 3606   ⊆ wss 3607  ∪ cuni 4468  ‘cfv 5926  Topctop 20746  Clsdccld 20868 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-iota 5889  df-fun 5928  df-fv 5934  df-topgen 16151  df-top 20747  df-cld 20871 This theorem is referenced by:  connpconn  31343
 Copyright terms: Public domain W3C validator