MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclwwlks Structured version   Visualization version   GIF version

Theorem isclwwlks 26861
Description: Properties of a word to represent a closed walk (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.)
Hypotheses
Ref Expression
clwwlks.v 𝑉 = (Vtx‘𝐺)
clwwlks.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
isclwwlks (𝑊 ∈ (ClWWalks‘𝐺) ↔ ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸))
Distinct variable groups:   𝑖,𝐺   𝑖,𝑊
Allowed substitution hints:   𝐸(𝑖)   𝑉(𝑖)

Proof of Theorem isclwwlks
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 neeq1 2853 . . . 4 (𝑤 = 𝑊 → (𝑤 ≠ ∅ ↔ 𝑊 ≠ ∅))
2 fveq2 6178 . . . . . . 7 (𝑤 = 𝑊 → (#‘𝑤) = (#‘𝑊))
32oveq1d 6650 . . . . . 6 (𝑤 = 𝑊 → ((#‘𝑤) − 1) = ((#‘𝑊) − 1))
43oveq2d 6651 . . . . 5 (𝑤 = 𝑊 → (0..^((#‘𝑤) − 1)) = (0..^((#‘𝑊) − 1)))
5 fveq1 6177 . . . . . . 7 (𝑤 = 𝑊 → (𝑤𝑖) = (𝑊𝑖))
6 fveq1 6177 . . . . . . 7 (𝑤 = 𝑊 → (𝑤‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
75, 6preq12d 4267 . . . . . 6 (𝑤 = 𝑊 → {(𝑤𝑖), (𝑤‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))})
87eleq1d 2684 . . . . 5 (𝑤 = 𝑊 → ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ↔ {(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
94, 8raleqbidv 3147 . . . 4 (𝑤 = 𝑊 → (∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
10 fveq2 6178 . . . . . 6 (𝑤 = 𝑊 → ( lastS ‘𝑤) = ( lastS ‘𝑊))
11 fveq1 6177 . . . . . 6 (𝑤 = 𝑊 → (𝑤‘0) = (𝑊‘0))
1210, 11preq12d 4267 . . . . 5 (𝑤 = 𝑊 → {( lastS ‘𝑤), (𝑤‘0)} = {( lastS ‘𝑊), (𝑊‘0)})
1312eleq1d 2684 . . . 4 (𝑤 = 𝑊 → ({( lastS ‘𝑤), (𝑤‘0)} ∈ 𝐸 ↔ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸))
141, 9, 133anbi123d 1397 . . 3 (𝑤 = 𝑊 → ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ 𝐸) ↔ (𝑊 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸)))
1514elrab 3357 . 2 (𝑊 ∈ {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ 𝐸)} ↔ (𝑊 ∈ Word 𝑉 ∧ (𝑊 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸)))
16 clwwlks.v . . . 4 𝑉 = (Vtx‘𝐺)
17 clwwlks.e . . . 4 𝐸 = (Edg‘𝐺)
1816, 17clwwlks 26860 . . 3 (ClWWalks‘𝐺) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ 𝐸)}
1918eleq2i 2691 . 2 (𝑊 ∈ (ClWWalks‘𝐺) ↔ 𝑊 ∈ {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ 𝐸)})
20 3anass 1040 . . 3 (((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸) ↔ ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸)))
21 anass 680 . . 3 (((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸)) ↔ (𝑊 ∈ Word 𝑉 ∧ (𝑊 ≠ ∅ ∧ (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸))))
22 3anass 1040 . . . . 5 ((𝑊 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸) ↔ (𝑊 ≠ ∅ ∧ (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸)))
2322bicomi 214 . . . 4 ((𝑊 ≠ ∅ ∧ (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸)) ↔ (𝑊 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸))
2423anbi2i 729 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (𝑊 ≠ ∅ ∧ (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸))) ↔ (𝑊 ∈ Word 𝑉 ∧ (𝑊 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸)))
2520, 21, 243bitri 286 . 2 (((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸) ↔ (𝑊 ∈ Word 𝑉 ∧ (𝑊 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸)))
2615, 19, 253bitr4i 292 1 (𝑊 ∈ (ClWWalks‘𝐺) ↔ ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791  wral 2909  {crab 2913  c0 3907  {cpr 4170  cfv 5876  (class class class)co 6635  0cc0 9921  1c1 9922   + caddc 9924  cmin 10251  ..^cfzo 12449  #chash 13100  Word cword 13274   lastS clsw 13275  Vtxcvtx 25855  Edgcedg 25920  ClWWalkscclwwlks 26856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-er 7727  df-map 7844  df-pm 7845  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-card 8750  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-n0 11278  df-z 11363  df-uz 11673  df-fz 12312  df-fzo 12450  df-hash 13101  df-word 13282  df-clwwlks 26858
This theorem is referenced by:  clwwlkbp  26864  clwwlknp  26868  isclwwlksnx  26870  clwlkclwwlk  26884  clwwlks1loop  26888  clwwisshclwws  26908  clwlksfclwwlk  26942  extwwlkfablem2  27184
  Copyright terms: Public domain W3C validator