MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet3lem1 Structured version   Visualization version   GIF version

Theorem iscmet3lem1 23821
Description: Lemma for iscmet3 23823. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscmet3.1 𝑍 = (ℤ𝑀)
iscmet3.2 𝐽 = (MetOpen‘𝐷)
iscmet3.3 (𝜑𝑀 ∈ ℤ)
iscmet3.4 (𝜑𝐷 ∈ (Met‘𝑋))
iscmet3.6 (𝜑𝐹:𝑍𝑋)
iscmet3.9 (𝜑 → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
iscmet3.10 (𝜑 → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
Assertion
Ref Expression
iscmet3lem1 (𝜑𝐹 ∈ (Cau‘𝐷))
Distinct variable groups:   𝑘,𝑛,𝑢,𝑣,𝐷   𝑘,𝐹,𝑛,𝑢,𝑣   𝑘,𝑋,𝑛   𝑘,𝐽,𝑛   𝑆,𝑘,𝑛,𝑢,𝑣   𝑘,𝑍,𝑛   𝑘,𝑀,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝐽(𝑣,𝑢)   𝑀(𝑣,𝑢)   𝑋(𝑣,𝑢)   𝑍(𝑣,𝑢)

Proof of Theorem iscmet3lem1
Dummy variables 𝑗 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscmet3.3 . . . . . 6 (𝜑𝑀 ∈ ℤ)
2 iscmet3.1 . . . . . . 7 𝑍 = (ℤ𝑀)
32iscmet3lem3 23820 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑟)
41, 3sylan 580 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑟)
52r19.2uz 14699 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑟 → ∃𝑘𝑍 ((1 / 2)↑𝑘) < 𝑟)
64, 5syl 17 . . . 4 ((𝜑𝑟 ∈ ℝ+) → ∃𝑘𝑍 ((1 / 2)↑𝑘) < 𝑟)
7 fveq2 6663 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑆𝑛) = (𝑆𝑘))
87eleq2d 2895 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐹𝑘) ∈ (𝑆𝑛) ↔ (𝐹𝑘) ∈ (𝑆𝑘)))
9 iscmet3.10 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
109ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
11 simpl 483 . . . . . . . . . . . 12 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑘𝑍)
1211adantl 482 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘𝑍)
13 rsp 3202 . . . . . . . . . . 11 (∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛) → (𝑘𝑍 → ∀𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛)))
1410, 12, 13sylc 65 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
1512, 2eleqtrdi 2920 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘 ∈ (ℤ𝑀))
16 eluzfz2 12903 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ (𝑀...𝑘))
1715, 16syl 17 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘 ∈ (𝑀...𝑘))
188, 14, 17rspcdva 3622 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (𝐹𝑘) ∈ (𝑆𝑘))
197eleq2d 2895 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐹𝑗) ∈ (𝑆𝑛) ↔ (𝐹𝑗) ∈ (𝑆𝑘)))
20 oveq2 7153 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑀...𝑘) = (𝑀...𝑗))
21 fveq2 6663 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
2221eleq1d 2894 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ (𝑆𝑛) ↔ (𝐹𝑗) ∈ (𝑆𝑛)))
2320, 22raleqbidv 3399 . . . . . . . . . . 11 (𝑘 = 𝑗 → (∀𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑗)(𝐹𝑗) ∈ (𝑆𝑛)))
242uztrn2 12250 . . . . . . . . . . . 12 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
2524adantl 482 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑗𝑍)
2623, 10, 25rspcdva 3622 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑛 ∈ (𝑀...𝑗)(𝐹𝑗) ∈ (𝑆𝑛))
27 simprr 769 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑗 ∈ (ℤ𝑘))
28 elfzuzb 12890 . . . . . . . . . . 11 (𝑘 ∈ (𝑀...𝑗) ↔ (𝑘 ∈ (ℤ𝑀) ∧ 𝑗 ∈ (ℤ𝑘)))
2915, 27, 28sylanbrc 583 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘 ∈ (𝑀...𝑗))
3019, 26, 29rspcdva 3622 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (𝐹𝑗) ∈ (𝑆𝑘))
31 iscmet3.9 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
3231ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
33 eluzelz 12241 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
3433, 2eleq2s 2928 . . . . . . . . . . 11 (𝑘𝑍𝑘 ∈ ℤ)
3534ad2antrl 724 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘 ∈ ℤ)
36 rsp 3202 . . . . . . . . . 10 (∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) → (𝑘 ∈ ℤ → ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
3732, 35, 36sylc 65 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
38 oveq1 7152 . . . . . . . . . . 11 (𝑢 = (𝐹𝑘) → (𝑢𝐷𝑣) = ((𝐹𝑘)𝐷𝑣))
3938breq1d 5067 . . . . . . . . . 10 (𝑢 = (𝐹𝑘) → ((𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ((𝐹𝑘)𝐷𝑣) < ((1 / 2)↑𝑘)))
40 oveq2 7153 . . . . . . . . . . 11 (𝑣 = (𝐹𝑗) → ((𝐹𝑘)𝐷𝑣) = ((𝐹𝑘)𝐷(𝐹𝑗)))
4140breq1d 5067 . . . . . . . . . 10 (𝑣 = (𝐹𝑗) → (((𝐹𝑘)𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘)))
4239, 41rspc2va 3631 . . . . . . . . 9 ((((𝐹𝑘) ∈ (𝑆𝑘) ∧ (𝐹𝑗) ∈ (𝑆𝑘)) ∧ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) → ((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘))
4318, 30, 37, 42syl21anc 833 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘))
44 iscmet3.4 . . . . . . . . . . 11 (𝜑𝐷 ∈ (Met‘𝑋))
4544ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝐷 ∈ (Met‘𝑋))
46 iscmet3.6 . . . . . . . . . . . 12 (𝜑𝐹:𝑍𝑋)
4746adantr 481 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ℝ+) → 𝐹:𝑍𝑋)
48 ffvelrn 6841 . . . . . . . . . . 11 ((𝐹:𝑍𝑋𝑘𝑍) → (𝐹𝑘) ∈ 𝑋)
4947, 11, 48syl2an 595 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (𝐹𝑘) ∈ 𝑋)
50 ffvelrn 6841 . . . . . . . . . . 11 ((𝐹:𝑍𝑋𝑗𝑍) → (𝐹𝑗) ∈ 𝑋)
5147, 24, 50syl2an 595 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (𝐹𝑗) ∈ 𝑋)
52 metcl 22869 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋) → ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ)
5345, 49, 51, 52syl3anc 1363 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ)
54 1rp 12381 . . . . . . . . . . . 12 1 ∈ ℝ+
55 rphalfcl 12404 . . . . . . . . . . . 12 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
5654, 55ax-mp 5 . . . . . . . . . . 11 (1 / 2) ∈ ℝ+
57 rpexpcl 13436 . . . . . . . . . . 11 (((1 / 2) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / 2)↑𝑘) ∈ ℝ+)
5856, 35, 57sylancr 587 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((1 / 2)↑𝑘) ∈ ℝ+)
5958rpred 12419 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((1 / 2)↑𝑘) ∈ ℝ)
60 rpre 12385 . . . . . . . . . 10 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
6160ad2antlr 723 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑟 ∈ ℝ)
62 lttr 10705 . . . . . . . . 9 ((((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ ∧ ((1 / 2)↑𝑘) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘) ∧ ((1 / 2)↑𝑘) < 𝑟) → ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6353, 59, 61, 62syl3anc 1363 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘) ∧ ((1 / 2)↑𝑘) < 𝑟) → ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6443, 63mpand 691 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (((1 / 2)↑𝑘) < 𝑟 → ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6564anassrs 468 . . . . . 6 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (((1 / 2)↑𝑘) < 𝑟 → ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6665ralrimdva 3186 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (((1 / 2)↑𝑘) < 𝑟 → ∀𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6766reximdva 3271 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (∃𝑘𝑍 ((1 / 2)↑𝑘) < 𝑟 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
686, 67mpd 15 . . 3 ((𝜑𝑟 ∈ ℝ+) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟)
6968ralrimiva 3179 . 2 (𝜑 → ∀𝑟 ∈ ℝ+𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟)
70 metxmet 22871 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
7144, 70syl 17 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
72 eqidd 2819 . . 3 ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐹𝑗))
73 eqidd 2819 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
742, 71, 1, 72, 73, 46iscauf 23810 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑟 ∈ ℝ+𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
7569, 74mpbird 258 1 (𝜑𝐹 ∈ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wral 3135  wrex 3136   class class class wbr 5057  wf 6344  cfv 6348  (class class class)co 7145  cr 10524  1c1 10526   < clt 10663   / cdiv 11285  2c2 11680  cz 11969  cuz 12231  +crp 12377  ...cfz 12880  cexp 13417  ∞Metcxmet 20458  Metcmet 20459  MetOpencmopn 20463  Cauccau 23783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-xneg 12495  df-xadd 12496  df-fz 12881  df-fl 13150  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-rlim 14834  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-cau 23786
This theorem is referenced by:  iscmet3  23823
  Copyright terms: Public domain W3C validator