MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet3lem2 Structured version   Visualization version   GIF version

Theorem iscmet3lem2 23822
Description: Lemma for iscmet3 23823. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscmet3.1 𝑍 = (ℤ𝑀)
iscmet3.2 𝐽 = (MetOpen‘𝐷)
iscmet3.3 (𝜑𝑀 ∈ ℤ)
iscmet3.4 (𝜑𝐷 ∈ (Met‘𝑋))
iscmet3.6 (𝜑𝐹:𝑍𝑋)
iscmet3.9 (𝜑 → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
iscmet3.10 (𝜑 → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
iscmet3.7 (𝜑𝐺 ∈ (Fil‘𝑋))
iscmet3.8 (𝜑𝑆:ℤ⟶𝐺)
iscmet3.5 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
Assertion
Ref Expression
iscmet3lem2 (𝜑 → (𝐽 fLim 𝐺) ≠ ∅)
Distinct variable groups:   𝑘,𝑛,𝑢,𝑣,𝐷   𝑘,𝐺   𝑘,𝐹,𝑛,𝑢,𝑣   𝑘,𝑋,𝑛   𝑘,𝐽,𝑛   𝑆,𝑘,𝑛,𝑢,𝑣   𝑘,𝑍,𝑛   𝑘,𝑀,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝐺(𝑣,𝑢,𝑛)   𝐽(𝑣,𝑢)   𝑀(𝑣,𝑢)   𝑋(𝑣,𝑢)   𝑍(𝑣,𝑢)

Proof of Theorem iscmet3lem2
Dummy variables 𝑗 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscmet3.5 . . 3 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
2 eldmg 5760 . . . 4 (𝐹 ∈ dom (⇝𝑡𝐽) → (𝐹 ∈ dom (⇝𝑡𝐽) ↔ ∃𝑥 𝐹(⇝𝑡𝐽)𝑥))
32ibi 268 . . 3 (𝐹 ∈ dom (⇝𝑡𝐽) → ∃𝑥 𝐹(⇝𝑡𝐽)𝑥)
41, 3syl 17 . 2 (𝜑 → ∃𝑥 𝐹(⇝𝑡𝐽)𝑥)
5 iscmet3.4 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
6 metxmet 22871 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
75, 6syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
8 iscmet3.2 . . . . . . 7 𝐽 = (MetOpen‘𝐷)
98mopntopon 22976 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
107, 9syl 17 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
11 lmcl 21833 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝑥) → 𝑥𝑋)
1210, 11sylan 580 . . . 4 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → 𝑥𝑋)
137adantr 481 . . . . . . 7 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → 𝐷 ∈ (∞Met‘𝑋))
148mopni2 23030 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝐽𝑥𝑦) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)
15143expia 1113 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝐽) → (𝑥𝑦 → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦))
1613, 15sylan 580 . . . . . 6 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) → (𝑥𝑦 → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦))
17 iscmet3.7 . . . . . . . . 9 (𝜑𝐺 ∈ (Fil‘𝑋))
1817ad3antrrr 726 . . . . . . . 8 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝐺 ∈ (Fil‘𝑋))
19 iscmet3.3 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
2019ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝑀 ∈ ℤ)
21 rphalfcl 12404 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
2221adantl 482 . . . . . . . . . . 11 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
23 iscmet3.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
2423iscmet3lem3 23820 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ (𝑟 / 2) ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < (𝑟 / 2))
2520, 22, 24syl2anc 584 . . . . . . . . . 10 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < (𝑟 / 2))
2613adantr 481 . . . . . . . . . . . 12 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
2712adantr 481 . . . . . . . . . . . 12 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝑥𝑋)
28 blcntr 22950 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / 2) ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)))
2926, 27, 22, 28syl3anc 1363 . . . . . . . . . . 11 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)))
30 simplr 765 . . . . . . . . . . 11 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝐹(⇝𝑡𝐽)𝑥)
3122rpxrd 12420 . . . . . . . . . . . 12 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ*)
328blopn 23037 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / 2) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽)
3326, 27, 31, 32syl3anc 1363 . . . . . . . . . . 11 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽)
3423, 29, 20, 30, 33lmcvg 21798 . . . . . . . . . 10 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2)))
3523rexanuz2 14697 . . . . . . . . . . 11 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < (𝑟 / 2) ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))
3623r19.2uz 14699 . . . . . . . . . . . 12 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → ∃𝑘𝑍 (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))
3717ad3antrrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → 𝐺 ∈ (Fil‘𝑋))
38 iscmet3.8 . . . . . . . . . . . . . . . 16 (𝜑𝑆:ℤ⟶𝐺)
3938ad3antrrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → 𝑆:ℤ⟶𝐺)
40 eluzelz 12241 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
4140, 23eleq2s 2928 . . . . . . . . . . . . . . . 16 (𝑘𝑍𝑘 ∈ ℤ)
4241ad2antrl 724 . . . . . . . . . . . . . . 15 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → 𝑘 ∈ ℤ)
43 ffvelrn 6841 . . . . . . . . . . . . . . 15 ((𝑆:ℤ⟶𝐺𝑘 ∈ ℤ) → (𝑆𝑘) ∈ 𝐺)
4439, 42, 43syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → (𝑆𝑘) ∈ 𝐺)
45 rpxr 12386 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
4645adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
47 blssm 22955 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ*) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋)
4826, 27, 46, 47syl3anc 1363 . . . . . . . . . . . . . . 15 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋)
4948adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋)
5041adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑘 ∈ ℤ)
51 1rp 12381 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ+
52 rphalfcl 12404 . . . . . . . . . . . . . . . . . . . . . . 23 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
5351, 52ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (1 / 2) ∈ ℝ+
54 rpexpcl 13436 . . . . . . . . . . . . . . . . . . . . . 22 (((1 / 2) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / 2)↑𝑘) ∈ ℝ+)
5553, 54mpan 686 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → ((1 / 2)↑𝑘) ∈ ℝ+)
5650, 55syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((1 / 2)↑𝑘) ∈ ℝ+)
5756rpred 12419 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((1 / 2)↑𝑘) ∈ ℝ)
5822adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (𝑟 / 2) ∈ ℝ+)
5958rpred 12419 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (𝑟 / 2) ∈ ℝ)
60 ltle 10717 . . . . . . . . . . . . . . . . . . 19 ((((1 / 2)↑𝑘) ∈ ℝ ∧ (𝑟 / 2) ∈ ℝ) → (((1 / 2)↑𝑘) < (𝑟 / 2) → ((1 / 2)↑𝑘) ≤ (𝑟 / 2)))
6157, 59, 60syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (((1 / 2)↑𝑘) < (𝑟 / 2) → ((1 / 2)↑𝑘) ≤ (𝑟 / 2)))
62 fveq2 6663 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑘 → (𝑆𝑛) = (𝑆𝑘))
6362eleq2d 2895 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑘 → ((𝐹𝑘) ∈ (𝑆𝑛) ↔ (𝐹𝑘) ∈ (𝑆𝑘)))
64 iscmet3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
6564r19.21bi 3205 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘𝑍) → ∀𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
66 eluzfz2 12903 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ (𝑀...𝑘))
6766, 23eleq2s 2928 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘𝑍𝑘 ∈ (𝑀...𝑘))
6867adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘𝑍) → 𝑘 ∈ (𝑀...𝑘))
6963, 65, 68rspcdva 3622 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (𝑆𝑘))
7069adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → (𝐹𝑘) ∈ (𝑆𝑘))
71 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → 𝑦 ∈ (𝑆𝑘))
72 iscmet3.9 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
7372ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
7441ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → 𝑘 ∈ ℤ)
75 rsp 3202 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) → (𝑘 ∈ ℤ → ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
7673, 74, 75sylc 65 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
77 oveq1 7152 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑢 = (𝐹𝑘) → (𝑢𝐷𝑣) = ((𝐹𝑘)𝐷𝑣))
7877breq1d 5067 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = (𝐹𝑘) → ((𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ((𝐹𝑘)𝐷𝑣) < ((1 / 2)↑𝑘)))
79 oveq2 7153 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = 𝑦 → ((𝐹𝑘)𝐷𝑣) = ((𝐹𝑘)𝐷𝑦))
8079breq1d 5067 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = 𝑦 → (((𝐹𝑘)𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ((𝐹𝑘)𝐷𝑦) < ((1 / 2)↑𝑘)))
8178, 80rspc2va 3631 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐹𝑘) ∈ (𝑆𝑘) ∧ 𝑦 ∈ (𝑆𝑘)) ∧ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) → ((𝐹𝑘)𝐷𝑦) < ((1 / 2)↑𝑘))
8270, 71, 76, 81syl21anc 833 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → ((𝐹𝑘)𝐷𝑦) < ((1 / 2)↑𝑘))
837ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → 𝐷 ∈ (∞Met‘𝑋))
8441, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘𝑍 → ((1 / 2)↑𝑘) ∈ ℝ+)
8584rpxrd 12420 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘𝑍 → ((1 / 2)↑𝑘) ∈ ℝ*)
8685ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → ((1 / 2)↑𝑘) ∈ ℝ*)
87 iscmet3.6 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐹:𝑍𝑋)
8887ffvelrnda 6843 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑋)
8988adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → (𝐹𝑘) ∈ 𝑋)
9017adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘𝑍) → 𝐺 ∈ (Fil‘𝑋))
9138, 41, 43syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘𝑍) → (𝑆𝑘) ∈ 𝐺)
92 filelss 22388 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺 ∈ (Fil‘𝑋) ∧ (𝑆𝑘) ∈ 𝐺) → (𝑆𝑘) ⊆ 𝑋)
9390, 91, 92syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘𝑍) → (𝑆𝑘) ⊆ 𝑋)
9493sselda 3964 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → 𝑦𝑋)
95 elbl2 22927 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐷 ∈ (∞Met‘𝑋) ∧ ((1 / 2)↑𝑘) ∈ ℝ*) ∧ ((𝐹𝑘) ∈ 𝑋𝑦𝑋)) → (𝑦 ∈ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ↔ ((𝐹𝑘)𝐷𝑦) < ((1 / 2)↑𝑘)))
9683, 86, 89, 94, 95syl22anc 834 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → (𝑦 ∈ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ↔ ((𝐹𝑘)𝐷𝑦) < ((1 / 2)↑𝑘)))
9782, 96mpbird 258 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → 𝑦 ∈ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)))
9897ex 413 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → (𝑦 ∈ (𝑆𝑘) → 𝑦 ∈ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘))))
9998ssrdv 3970 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)))
10099ad4ant14 748 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)))
10126adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → 𝐷 ∈ (∞Met‘𝑋))
10287ad2antrr 722 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝐹:𝑍𝑋)
103102ffvelrnda 6843 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ 𝑋)
10456rpxrd 12420 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((1 / 2)↑𝑘) ∈ ℝ*)
10531adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (𝑟 / 2) ∈ ℝ*)
106 ssbl 22960 . . . . . . . . . . . . . . . . . . . . 21 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋) ∧ (((1 / 2)↑𝑘) ∈ ℝ* ∧ (𝑟 / 2) ∈ ℝ*) ∧ ((1 / 2)↑𝑘) ≤ (𝑟 / 2)) → ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)))
1071063expia 1113 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋) ∧ (((1 / 2)↑𝑘) ∈ ℝ* ∧ (𝑟 / 2) ∈ ℝ*)) → (((1 / 2)↑𝑘) ≤ (𝑟 / 2) → ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
108101, 103, 104, 105, 107syl22anc 834 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (((1 / 2)↑𝑘) ≤ (𝑟 / 2) → ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
109 sstr 3972 . . . . . . . . . . . . . . . . . . 19 (((𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ∧ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)))
110100, 108, 109syl6an 680 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (((1 / 2)↑𝑘) ≤ (𝑟 / 2) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
11161, 110syld 47 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (((1 / 2)↑𝑘) < (𝑟 / 2) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
112111adantrd 492 . . . . . . . . . . . . . . . 16 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
113112impr 455 . . . . . . . . . . . . . . 15 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)))
11427adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑥𝑋)
115 blcom 22931 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑟 / 2) ∈ ℝ*) ∧ (𝑥𝑋 ∧ (𝐹𝑘) ∈ 𝑋)) → ((𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ↔ 𝑥 ∈ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
116101, 105, 114, 103, 115syl22anc 834 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ↔ 𝑥 ∈ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
117 rpre 12385 . . . . . . . . . . . . . . . . . . . 20 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
118117ad2antlr 723 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑟 ∈ ℝ)
119 blhalf 22942 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋) ∧ (𝑟 ∈ ℝ ∧ 𝑥 ∈ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)))) → ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))
120119expr 457 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) → ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
121101, 103, 118, 120syl21anc 833 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (𝑥 ∈ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) → ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
122116, 121sylbid 241 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) → ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
123122adantld 491 . . . . . . . . . . . . . . . 16 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
124123impr 455 . . . . . . . . . . . . . . 15 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))
125113, 124sstrd 3974 . . . . . . . . . . . . . 14 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → (𝑆𝑘) ⊆ (𝑥(ball‘𝐷)𝑟))
126 filss 22389 . . . . . . . . . . . . . 14 ((𝐺 ∈ (Fil‘𝑋) ∧ ((𝑆𝑘) ∈ 𝐺 ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋 ∧ (𝑆𝑘) ⊆ (𝑥(ball‘𝐷)𝑟))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺)
12737, 44, 49, 125, 126syl13anc 1364 . . . . . . . . . . . . 13 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺)
128127rexlimdvaa 3282 . . . . . . . . . . . 12 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (∃𝑘𝑍 (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺))
12936, 128syl5 34 . . . . . . . . . . 11 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺))
13035, 129syl5bir 244 . . . . . . . . . 10 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → ((∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < (𝑟 / 2) ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺))
13125, 34, 130mp2and 695 . . . . . . . . 9 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺)
132131ad2ant2r 743 . . . . . . . 8 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺)
13310adantr 481 . . . . . . . . . 10 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → 𝐽 ∈ (TopOn‘𝑋))
134 toponss 21463 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → 𝑦𝑋)
135133, 134sylan 580 . . . . . . . . 9 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) → 𝑦𝑋)
136135adantr 481 . . . . . . . 8 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦𝑋)
137 simprr 769 . . . . . . . 8 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)
138 filss 22389 . . . . . . . 8 ((𝐺 ∈ (Fil‘𝑋) ∧ ((𝑥(ball‘𝐷)𝑟) ∈ 𝐺𝑦𝑋 ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦𝐺)
13918, 132, 136, 137, 138syl13anc 1364 . . . . . . 7 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦𝐺)
140139rexlimdvaa 3282 . . . . . 6 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) → (∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦𝑦𝐺))
14116, 140syld 47 . . . . 5 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) → (𝑥𝑦𝑦𝐺))
142141ralrimiva 3179 . . . 4 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → ∀𝑦𝐽 (𝑥𝑦𝑦𝐺))
143 flimopn 22511 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐺) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐺))))
14410, 17, 143syl2anc 584 . . . . 5 (𝜑 → (𝑥 ∈ (𝐽 fLim 𝐺) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐺))))
145144adantr 481 . . . 4 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → (𝑥 ∈ (𝐽 fLim 𝐺) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐺))))
14612, 142, 145mpbir2and 709 . . 3 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → 𝑥 ∈ (𝐽 fLim 𝐺))
147146ne0d 4298 . 2 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → (𝐽 fLim 𝐺) ≠ ∅)
1484, 147exlimddv 1927 1 (𝜑 → (𝐽 fLim 𝐺) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wex 1771  wcel 2105  wne 3013  wral 3135  wrex 3136  wss 3933  c0 4288   class class class wbr 5057  dom cdm 5548  wf 6344  cfv 6348  (class class class)co 7145  cr 10524  1c1 10526  *cxr 10662   < clt 10663  cle 10664   / cdiv 11285  2c2 11680  cz 11969  cuz 12231  +crp 12377  ...cfz 12880  cexp 13417  ∞Metcxmet 20458  Metcmet 20459  ballcbl 20460  MetOpencmopn 20463  TopOnctopon 21446  𝑡clm 21762  Filcfil 22381   fLim cflim 22470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-fz 12881  df-fl 13150  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-rlim 14834  df-topgen 16705  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-top 21430  df-topon 21447  df-bases 21482  df-ntr 21556  df-nei 21634  df-lm 21765  df-fil 22382  df-flim 22475
This theorem is referenced by:  iscmet3  23823
  Copyright terms: Public domain W3C validator