MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet3lem2 Structured version   Visualization version   GIF version

Theorem iscmet3lem2 23261
Description: Lemma for iscmet3 23262. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscmet3.1 𝑍 = (ℤ𝑀)
iscmet3.2 𝐽 = (MetOpen‘𝐷)
iscmet3.3 (𝜑𝑀 ∈ ℤ)
iscmet3.4 (𝜑𝐷 ∈ (Met‘𝑋))
iscmet3.6 (𝜑𝐹:𝑍𝑋)
iscmet3.9 (𝜑 → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
iscmet3.10 (𝜑 → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
iscmet3.7 (𝜑𝐺 ∈ (Fil‘𝑋))
iscmet3.8 (𝜑𝑆:ℤ⟶𝐺)
iscmet3.5 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
Assertion
Ref Expression
iscmet3lem2 (𝜑 → (𝐽 fLim 𝐺) ≠ ∅)
Distinct variable groups:   𝑘,𝑛,𝑢,𝑣,𝐷   𝑘,𝐺   𝑘,𝐹,𝑛,𝑢,𝑣   𝑘,𝑋,𝑛   𝑘,𝐽,𝑛   𝑆,𝑘,𝑛,𝑢,𝑣   𝑘,𝑍,𝑛   𝑘,𝑀,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝐺(𝑣,𝑢,𝑛)   𝐽(𝑣,𝑢)   𝑀(𝑣,𝑢)   𝑋(𝑣,𝑢)   𝑍(𝑣,𝑢)

Proof of Theorem iscmet3lem2
Dummy variables 𝑗 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscmet3.5 . . 3 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
2 eldmg 5462 . . . 4 (𝐹 ∈ dom (⇝𝑡𝐽) → (𝐹 ∈ dom (⇝𝑡𝐽) ↔ ∃𝑥 𝐹(⇝𝑡𝐽)𝑥))
32ibi 256 . . 3 (𝐹 ∈ dom (⇝𝑡𝐽) → ∃𝑥 𝐹(⇝𝑡𝐽)𝑥)
41, 3syl 17 . 2 (𝜑 → ∃𝑥 𝐹(⇝𝑡𝐽)𝑥)
5 iscmet3.4 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
6 metxmet 22311 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
75, 6syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
8 iscmet3.2 . . . . . . 7 𝐽 = (MetOpen‘𝐷)
98mopntopon 22416 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
107, 9syl 17 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
11 lmcl 21274 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝑥) → 𝑥𝑋)
1210, 11sylan 489 . . . 4 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → 𝑥𝑋)
137adantr 472 . . . . . . 7 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → 𝐷 ∈ (∞Met‘𝑋))
148mopni2 22470 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝐽𝑥𝑦) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)
15143expia 1114 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝐽) → (𝑥𝑦 → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦))
1613, 15sylan 489 . . . . . 6 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) → (𝑥𝑦 → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦))
17 iscmet3.7 . . . . . . . . 9 (𝜑𝐺 ∈ (Fil‘𝑋))
1817ad3antrrr 768 . . . . . . . 8 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝐺 ∈ (Fil‘𝑋))
19 iscmet3.3 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
2019ad2antrr 764 . . . . . . . . . . 11 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝑀 ∈ ℤ)
21 rphalfcl 12022 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
2221adantl 473 . . . . . . . . . . 11 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
23 iscmet3.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
2423iscmet3lem3 23259 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ (𝑟 / 2) ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < (𝑟 / 2))
2520, 22, 24syl2anc 696 . . . . . . . . . 10 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < (𝑟 / 2))
2613adantr 472 . . . . . . . . . . . 12 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
2712adantr 472 . . . . . . . . . . . 12 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝑥𝑋)
28 blcntr 22390 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / 2) ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)))
2926, 27, 22, 28syl3anc 1463 . . . . . . . . . . 11 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)))
30 simplr 809 . . . . . . . . . . 11 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝐹(⇝𝑡𝐽)𝑥)
3122rpxrd 12037 . . . . . . . . . . . 12 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ*)
328blopn 22477 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / 2) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽)
3326, 27, 31, 32syl3anc 1463 . . . . . . . . . . 11 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽)
3423, 29, 20, 30, 33lmcvg 21239 . . . . . . . . . 10 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2)))
3523rexanuz2 14259 . . . . . . . . . . 11 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < (𝑟 / 2) ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))
3623r19.2uz 14261 . . . . . . . . . . . 12 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → ∃𝑘𝑍 (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))
3717ad3antrrr 768 . . . . . . . . . . . . . 14 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → 𝐺 ∈ (Fil‘𝑋))
38 iscmet3.8 . . . . . . . . . . . . . . . 16 (𝜑𝑆:ℤ⟶𝐺)
3938ad3antrrr 768 . . . . . . . . . . . . . . 15 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → 𝑆:ℤ⟶𝐺)
40 eluzelz 11860 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
4140, 23eleq2s 2845 . . . . . . . . . . . . . . . 16 (𝑘𝑍𝑘 ∈ ℤ)
4241ad2antrl 766 . . . . . . . . . . . . . . 15 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → 𝑘 ∈ ℤ)
43 ffvelrn 6508 . . . . . . . . . . . . . . 15 ((𝑆:ℤ⟶𝐺𝑘 ∈ ℤ) → (𝑆𝑘) ∈ 𝐺)
4439, 42, 43syl2anc 696 . . . . . . . . . . . . . 14 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → (𝑆𝑘) ∈ 𝐺)
45 rpxr 12004 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
4645adantl 473 . . . . . . . . . . . . . . . 16 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
47 blssm 22395 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ*) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋)
4826, 27, 46, 47syl3anc 1463 . . . . . . . . . . . . . . 15 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋)
4948adantr 472 . . . . . . . . . . . . . 14 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋)
5041adantl 473 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑘 ∈ ℤ)
51 1rp 12000 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ+
52 rphalfcl 12022 . . . . . . . . . . . . . . . . . . . . . . 23 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
5351, 52ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (1 / 2) ∈ ℝ+
54 rpexpcl 13044 . . . . . . . . . . . . . . . . . . . . . 22 (((1 / 2) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / 2)↑𝑘) ∈ ℝ+)
5553, 54mpan 708 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → ((1 / 2)↑𝑘) ∈ ℝ+)
5650, 55syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((1 / 2)↑𝑘) ∈ ℝ+)
5756rpred 12036 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((1 / 2)↑𝑘) ∈ ℝ)
5822adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (𝑟 / 2) ∈ ℝ+)
5958rpred 12036 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (𝑟 / 2) ∈ ℝ)
60 ltle 10289 . . . . . . . . . . . . . . . . . . 19 ((((1 / 2)↑𝑘) ∈ ℝ ∧ (𝑟 / 2) ∈ ℝ) → (((1 / 2)↑𝑘) < (𝑟 / 2) → ((1 / 2)↑𝑘) ≤ (𝑟 / 2)))
6157, 59, 60syl2anc 696 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (((1 / 2)↑𝑘) < (𝑟 / 2) → ((1 / 2)↑𝑘) ≤ (𝑟 / 2)))
62 simpll 807 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝜑)
63 eluzfz2 12513 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ (𝑀...𝑘))
6463, 23eleq2s 2845 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘𝑍𝑘 ∈ (𝑀...𝑘))
6564adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘𝑍) → 𝑘 ∈ (𝑀...𝑘))
66 iscmet3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
6766r19.21bi 3058 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘𝑍) → ∀𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
68 fveq2 6340 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = 𝑘 → (𝑆𝑛) = (𝑆𝑘))
6968eleq2d 2813 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑘 → ((𝐹𝑘) ∈ (𝑆𝑛) ↔ (𝐹𝑘) ∈ (𝑆𝑘)))
7069rspcv 3433 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 ∈ (𝑀...𝑘) → (∀𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛) → (𝐹𝑘) ∈ (𝑆𝑘)))
7165, 67, 70sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (𝑆𝑘))
7271adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → (𝐹𝑘) ∈ (𝑆𝑘))
73 simpr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → 𝑦 ∈ (𝑆𝑘))
74 iscmet3.9 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
7574ad2antrr 764 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
7641ad2antlr 765 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → 𝑘 ∈ ℤ)
77 rsp 3055 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) → (𝑘 ∈ ℤ → ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
7875, 76, 77sylc 65 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
79 oveq1 6808 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑢 = (𝐹𝑘) → (𝑢𝐷𝑣) = ((𝐹𝑘)𝐷𝑣))
8079breq1d 4802 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = (𝐹𝑘) → ((𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ((𝐹𝑘)𝐷𝑣) < ((1 / 2)↑𝑘)))
81 oveq2 6809 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = 𝑦 → ((𝐹𝑘)𝐷𝑣) = ((𝐹𝑘)𝐷𝑦))
8281breq1d 4802 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = 𝑦 → (((𝐹𝑘)𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ((𝐹𝑘)𝐷𝑦) < ((1 / 2)↑𝑘)))
8380, 82rspc2va 3450 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐹𝑘) ∈ (𝑆𝑘) ∧ 𝑦 ∈ (𝑆𝑘)) ∧ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) → ((𝐹𝑘)𝐷𝑦) < ((1 / 2)↑𝑘))
8472, 73, 78, 83syl21anc 1462 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → ((𝐹𝑘)𝐷𝑦) < ((1 / 2)↑𝑘))
857ad2antrr 764 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → 𝐷 ∈ (∞Met‘𝑋))
8641, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘𝑍 → ((1 / 2)↑𝑘) ∈ ℝ+)
8786rpxrd 12037 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘𝑍 → ((1 / 2)↑𝑘) ∈ ℝ*)
8887ad2antlr 765 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → ((1 / 2)↑𝑘) ∈ ℝ*)
89 iscmet3.6 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐹:𝑍𝑋)
9089ffvelrnda 6510 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑋)
9190adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → (𝐹𝑘) ∈ 𝑋)
9217adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘𝑍) → 𝐺 ∈ (Fil‘𝑋))
9338, 41, 43syl2an 495 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘𝑍) → (𝑆𝑘) ∈ 𝐺)
94 filelss 21828 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺 ∈ (Fil‘𝑋) ∧ (𝑆𝑘) ∈ 𝐺) → (𝑆𝑘) ⊆ 𝑋)
9592, 93, 94syl2anc 696 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘𝑍) → (𝑆𝑘) ⊆ 𝑋)
9695sselda 3732 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → 𝑦𝑋)
97 elbl2 22367 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐷 ∈ (∞Met‘𝑋) ∧ ((1 / 2)↑𝑘) ∈ ℝ*) ∧ ((𝐹𝑘) ∈ 𝑋𝑦𝑋)) → (𝑦 ∈ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ↔ ((𝐹𝑘)𝐷𝑦) < ((1 / 2)↑𝑘)))
9885, 88, 91, 96, 97syl22anc 1464 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → (𝑦 ∈ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ↔ ((𝐹𝑘)𝐷𝑦) < ((1 / 2)↑𝑘)))
9984, 98mpbird 247 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → 𝑦 ∈ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)))
10099ex 449 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → (𝑦 ∈ (𝑆𝑘) → 𝑦 ∈ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘))))
101100ssrdv 3738 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)))
10262, 101sylan 489 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)))
10326adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → 𝐷 ∈ (∞Met‘𝑋))
10489ad2antrr 764 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝐹:𝑍𝑋)
105104ffvelrnda 6510 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ 𝑋)
10656rpxrd 12037 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((1 / 2)↑𝑘) ∈ ℝ*)
10731adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (𝑟 / 2) ∈ ℝ*)
108 ssbl 22400 . . . . . . . . . . . . . . . . . . . . 21 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋) ∧ (((1 / 2)↑𝑘) ∈ ℝ* ∧ (𝑟 / 2) ∈ ℝ*) ∧ ((1 / 2)↑𝑘) ≤ (𝑟 / 2)) → ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)))
1091083expia 1114 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋) ∧ (((1 / 2)↑𝑘) ∈ ℝ* ∧ (𝑟 / 2) ∈ ℝ*)) → (((1 / 2)↑𝑘) ≤ (𝑟 / 2) → ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
110103, 105, 106, 107, 109syl22anc 1464 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (((1 / 2)↑𝑘) ≤ (𝑟 / 2) → ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
111 sstr 3740 . . . . . . . . . . . . . . . . . . 19 (((𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ∧ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)))
112102, 110, 111syl6an 569 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (((1 / 2)↑𝑘) ≤ (𝑟 / 2) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
11361, 112syld 47 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (((1 / 2)↑𝑘) < (𝑟 / 2) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
114113adantrd 485 . . . . . . . . . . . . . . . 16 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
115114impr 650 . . . . . . . . . . . . . . 15 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)))
11627adantr 472 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑥𝑋)
117 blcom 22371 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑟 / 2) ∈ ℝ*) ∧ (𝑥𝑋 ∧ (𝐹𝑘) ∈ 𝑋)) → ((𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ↔ 𝑥 ∈ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
118103, 107, 116, 105, 117syl22anc 1464 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ↔ 𝑥 ∈ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
119 rpre 12003 . . . . . . . . . . . . . . . . . . . 20 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
120119ad2antlr 765 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑟 ∈ ℝ)
121 blhalf 22382 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋) ∧ (𝑟 ∈ ℝ ∧ 𝑥 ∈ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)))) → ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))
122121expr 644 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) → ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
123103, 105, 120, 122syl21anc 1462 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (𝑥 ∈ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) → ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
124118, 123sylbid 230 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) → ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
125124adantld 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
126125impr 650 . . . . . . . . . . . . . . 15 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))
127115, 126sstrd 3742 . . . . . . . . . . . . . 14 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → (𝑆𝑘) ⊆ (𝑥(ball‘𝐷)𝑟))
128 filss 21829 . . . . . . . . . . . . . 14 ((𝐺 ∈ (Fil‘𝑋) ∧ ((𝑆𝑘) ∈ 𝐺 ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋 ∧ (𝑆𝑘) ⊆ (𝑥(ball‘𝐷)𝑟))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺)
12937, 44, 49, 127, 128syl13anc 1465 . . . . . . . . . . . . 13 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺)
130129rexlimdvaa 3158 . . . . . . . . . . . 12 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (∃𝑘𝑍 (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺))
13136, 130syl5 34 . . . . . . . . . . 11 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺))
13235, 131syl5bir 233 . . . . . . . . . 10 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → ((∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < (𝑟 / 2) ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺))
13325, 34, 132mp2and 717 . . . . . . . . 9 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺)
134133ad2ant2r 800 . . . . . . . 8 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺)
13510adantr 472 . . . . . . . . . 10 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → 𝐽 ∈ (TopOn‘𝑋))
136 toponss 20904 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → 𝑦𝑋)
137135, 136sylan 489 . . . . . . . . 9 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) → 𝑦𝑋)
138137adantr 472 . . . . . . . 8 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦𝑋)
139 simprr 813 . . . . . . . 8 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)
140 filss 21829 . . . . . . . 8 ((𝐺 ∈ (Fil‘𝑋) ∧ ((𝑥(ball‘𝐷)𝑟) ∈ 𝐺𝑦𝑋 ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦𝐺)
14118, 134, 138, 139, 140syl13anc 1465 . . . . . . 7 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦𝐺)
142141rexlimdvaa 3158 . . . . . 6 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) → (∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦𝑦𝐺))
14316, 142syld 47 . . . . 5 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) → (𝑥𝑦𝑦𝐺))
144143ralrimiva 3092 . . . 4 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → ∀𝑦𝐽 (𝑥𝑦𝑦𝐺))
145 flimopn 21951 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐺) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐺))))
14610, 17, 145syl2anc 696 . . . . 5 (𝜑 → (𝑥 ∈ (𝐽 fLim 𝐺) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐺))))
147146adantr 472 . . . 4 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → (𝑥 ∈ (𝐽 fLim 𝐺) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐺))))
14812, 144, 147mpbir2and 995 . . 3 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → 𝑥 ∈ (𝐽 fLim 𝐺))
149 ne0i 4052 . . 3 (𝑥 ∈ (𝐽 fLim 𝐺) → (𝐽 fLim 𝐺) ≠ ∅)
150148, 149syl 17 . 2 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → (𝐽 fLim 𝐺) ≠ ∅)
1514, 150exlimddv 2000 1 (𝜑 → (𝐽 fLim 𝐺) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1620  wex 1841  wcel 2127  wne 2920  wral 3038  wrex 3039  wss 3703  c0 4046   class class class wbr 4792  dom cdm 5254  wf 6033  cfv 6037  (class class class)co 6801  cr 10098  1c1 10100  *cxr 10236   < clt 10237  cle 10238   / cdiv 10847  2c2 11233  cz 11540  cuz 11850  +crp 11996  ...cfz 12490  cexp 13025  ∞Metcxmt 19904  Metcme 19905  ballcbl 19906  MetOpencmopn 19909  TopOnctopon 20888  𝑡clm 21203  Filcfil 21821   fLim cflim 21910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-er 7899  df-map 8013  df-pm 8014  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8501  df-inf 8502  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-n0 11456  df-z 11541  df-uz 11851  df-q 11953  df-rp 11997  df-xneg 12110  df-xadd 12111  df-xmul 12112  df-fz 12491  df-fl 12758  df-seq 12967  df-exp 13026  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-clim 14389  df-rlim 14390  df-topgen 16277  df-psmet 19911  df-xmet 19912  df-met 19913  df-bl 19914  df-mopn 19915  df-fbas 19916  df-top 20872  df-topon 20889  df-bases 20923  df-ntr 20997  df-nei 21075  df-lm 21206  df-fil 21822  df-flim 21915
This theorem is referenced by:  iscmet3  23262
  Copyright terms: Public domain W3C validator