Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet3lem3 Structured version   Visualization version   GIF version

Theorem iscmet3lem3 23288
 Description: Lemma for iscmet3 23291. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
iscmet3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
iscmet3lem3 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑅)
Distinct variable groups:   𝑗,𝑘,𝑅   𝑗,𝑍,𝑘   𝑗,𝑀,𝑘

Proof of Theorem iscmet3lem3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 iscmet3.1 . . 3 𝑍 = (ℤ𝑀)
2 simpl 474 . . 3 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → 𝑀 ∈ ℤ)
3 simpr 479 . . 3 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈ ℝ+)
4 eluzelz 11889 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
54, 1eleq2s 2857 . . . . 5 (𝑘𝑍𝑘 ∈ ℤ)
65adantl 473 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑘 ∈ ℤ)
7 oveq2 6821 . . . . 5 (𝑛 = 𝑘 → ((1 / 2)↑𝑛) = ((1 / 2)↑𝑘))
8 eqid 2760 . . . . 5 (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) = (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛))
9 ovex 6841 . . . . 5 ((1 / 2)↑𝑘) ∈ V
107, 8, 9fvmpt 6444 . . . 4 (𝑘 ∈ ℤ → ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
116, 10syl 17 . . 3 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
12 nn0uz 11915 . . . . . . 7 0 = (ℤ‘0)
1312reseq2i 5548 . . . . . 6 ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ ℕ0) = ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0))
14 nn0ssz 11590 . . . . . . 7 0 ⊆ ℤ
15 resmpt 5607 . . . . . . 7 (ℕ0 ⊆ ℤ → ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ ℕ0) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))
1614, 15ax-mp 5 . . . . . 6 ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ ℕ0) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))
1713, 16eqtr3i 2784 . . . . 5 ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0)) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))
18 halfcn 11439 . . . . . . 7 (1 / 2) ∈ ℂ
1918a1i 11 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (1 / 2) ∈ ℂ)
20 halfre 11438 . . . . . . . . 9 (1 / 2) ∈ ℝ
21 1rp 12029 . . . . . . . . . . 11 1 ∈ ℝ+
22 rphalfcl 12051 . . . . . . . . . . 11 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
2321, 22ax-mp 5 . . . . . . . . . 10 (1 / 2) ∈ ℝ+
24 rpge0 12038 . . . . . . . . . 10 ((1 / 2) ∈ ℝ+ → 0 ≤ (1 / 2))
2523, 24ax-mp 5 . . . . . . . . 9 0 ≤ (1 / 2)
26 absid 14235 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
2720, 25, 26mp2an 710 . . . . . . . 8 (abs‘(1 / 2)) = (1 / 2)
28 halflt1 11442 . . . . . . . 8 (1 / 2) < 1
2927, 28eqbrtri 4825 . . . . . . 7 (abs‘(1 / 2)) < 1
3029a1i 11 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (abs‘(1 / 2)) < 1)
3119, 30expcnv 14795 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)) ⇝ 0)
3217, 31syl5eqbr 4839 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0)) ⇝ 0)
33 0z 11580 . . . . 5 0 ∈ ℤ
34 zex 11578 . . . . . . 7 ℤ ∈ V
3534mptex 6650 . . . . . 6 (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ∈ V
3635a1i 11 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ∈ V)
37 climres 14505 . . . . 5 ((0 ∈ ℤ ∧ (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ∈ V) → (((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0)) ⇝ 0 ↔ (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ⇝ 0))
3833, 36, 37sylancr 698 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0)) ⇝ 0 ↔ (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ⇝ 0))
3932, 38mpbid 222 . . 3 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ⇝ 0)
401, 2, 3, 11, 39climi0 14442 . 2 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((1 / 2)↑𝑘)) < 𝑅)
411uztrn2 11897 . . . . . 6 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
42 rpexpcl 13073 . . . . . . . . 9 (((1 / 2) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / 2)↑𝑘) ∈ ℝ+)
4323, 6, 42sylancr 698 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → ((1 / 2)↑𝑘) ∈ ℝ+)
44 rpre 12032 . . . . . . . . 9 (((1 / 2)↑𝑘) ∈ ℝ+ → ((1 / 2)↑𝑘) ∈ ℝ)
45 rpge0 12038 . . . . . . . . 9 (((1 / 2)↑𝑘) ∈ ℝ+ → 0 ≤ ((1 / 2)↑𝑘))
4644, 45absidd 14360 . . . . . . . 8 (((1 / 2)↑𝑘) ∈ ℝ+ → (abs‘((1 / 2)↑𝑘)) = ((1 / 2)↑𝑘))
4743, 46syl 17 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → (abs‘((1 / 2)↑𝑘)) = ((1 / 2)↑𝑘))
4847breq1d 4814 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → ((abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ((1 / 2)↑𝑘) < 𝑅))
4941, 48sylan2 492 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ((1 / 2)↑𝑘) < 𝑅))
5049anassrs 683 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ((1 / 2)↑𝑘) < 𝑅))
5150ralbidva 3123 . . 3 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ∀𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑅))
5251rexbidva 3187 . 2 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑅))
5340, 52mpbid 222 1 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑅)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∀wral 3050  ∃wrex 3051  Vcvv 3340   ⊆ wss 3715   class class class wbr 4804   ↦ cmpt 4881   ↾ cres 5268  ‘cfv 6049  (class class class)co 6813  ℂcc 10126  ℝcr 10127  0cc0 10128  1c1 10129   < clt 10266   ≤ cle 10267   / cdiv 10876  2c2 11262  ℕ0cn0 11484  ℤcz 11569  ℤ≥cuz 11879  ℝ+crp 12025  ↑cexp 13054  abscabs 14173   ⇝ cli 14414 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-fl 12787  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-rlim 14419 This theorem is referenced by:  iscmet3lem1  23289  iscmet3lem2  23290
 Copyright terms: Public domain W3C validator