![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscn | Structured version Visualization version GIF version |
Description: The predicate "𝐹 is a continuous function from topology 𝐽 to topology 𝐾." Definition of continuous function in [Munkres] p. 102. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
iscn | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfval 21085 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) | |
2 | 1 | eleq2d 2716 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽})) |
3 | cnveq 5328 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
4 | 3 | imaeq1d 5500 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (◡𝑓 “ 𝑦) = (◡𝐹 “ 𝑦)) |
5 | 4 | eleq1d 2715 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((◡𝑓 “ 𝑦) ∈ 𝐽 ↔ (◡𝐹 “ 𝑦) ∈ 𝐽)) |
6 | 5 | ralbidv 3015 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽 ↔ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
7 | 6 | elrab 3396 | . . 3 ⊢ (𝐹 ∈ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ↔ (𝐹 ∈ (𝑌 ↑𝑚 𝑋) ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
8 | toponmax 20778 | . . . . 5 ⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ 𝐾) | |
9 | toponmax 20778 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
10 | elmapg 7912 | . . . . 5 ⊢ ((𝑌 ∈ 𝐾 ∧ 𝑋 ∈ 𝐽) → (𝐹 ∈ (𝑌 ↑𝑚 𝑋) ↔ 𝐹:𝑋⟶𝑌)) | |
11 | 8, 9, 10 | syl2anr 494 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝑌 ↑𝑚 𝑋) ↔ 𝐹:𝑋⟶𝑌)) |
12 | 11 | anbi1d 741 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹 ∈ (𝑌 ↑𝑚 𝑋) ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
13 | 7, 12 | syl5bb 272 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
14 | 2, 13 | bitrd 268 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 {crab 2945 ◡ccnv 5142 “ cima 5146 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ↑𝑚 cmap 7899 TopOnctopon 20763 Cn ccn 21076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-map 7901 df-top 20747 df-topon 20764 df-cn 21079 |
This theorem is referenced by: iscn2 21090 cnf2 21101 tgcn 21104 ssidcn 21107 iscncl 21121 cnntr 21127 cnss1 21128 cnss2 21129 cncnp 21132 cnrest 21137 cnrest2 21138 cndis 21143 cnindis 21144 kgencn 21407 kgencn3 21409 tx1cn 21460 tx2cn 21461 txdis1cn 21486 qtopid 21556 qtopcn 21565 qtopf1 21667 qustgplem 21971 ucncn 22136 cvmlift2lem9a 31411 rfcnpre1 39492 0cnf 40408 |
Copyright terms: Public domain | W3C validator |