MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscnrm Structured version   Visualization version   GIF version

Theorem iscnrm 21037
Description: The property of being completely or hereditarily normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
ist0.1 𝑋 = 𝐽
Assertion
Ref Expression
iscnrm (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐽t 𝑥) ∈ Nrm))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋

Proof of Theorem iscnrm
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 unieq 4410 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝐽)
2 ist0.1 . . . . 5 𝑋 = 𝐽
31, 2syl6eqr 2673 . . . 4 (𝑗 = 𝐽 𝑗 = 𝑋)
43pweqd 4135 . . 3 (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝑋)
5 oveq1 6611 . . . 4 (𝑗 = 𝐽 → (𝑗t 𝑥) = (𝐽t 𝑥))
65eleq1d 2683 . . 3 (𝑗 = 𝐽 → ((𝑗t 𝑥) ∈ Nrm ↔ (𝐽t 𝑥) ∈ Nrm))
74, 6raleqbidv 3141 . 2 (𝑗 = 𝐽 → (∀𝑥 ∈ 𝒫 𝑗(𝑗t 𝑥) ∈ Nrm ↔ ∀𝑥 ∈ 𝒫 𝑋(𝐽t 𝑥) ∈ Nrm))
8 df-cnrm 21032 . 2 CNrm = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝒫 𝑗(𝑗t 𝑥) ∈ Nrm}
97, 8elrab2 3348 1 (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐽t 𝑥) ∈ Nrm))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  𝒫 cpw 4130   cuni 4402  (class class class)co 6604  t crest 16002  Topctop 20617  Nrmcnrm 21024  CNrmccnrm 21025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-iota 5810  df-fv 5855  df-ov 6607  df-cnrm 21032
This theorem is referenced by:  cnrmtop  21051  iscnrm2  21052  cnrmi  21074
  Copyright terms: Public domain W3C validator