![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscom2 | Structured version Visualization version GIF version |
Description: A device to add commutativity to various sorts of rings. (Contributed by FL, 6-Sep-2009.) (New usage is discouraged.) |
Ref | Expression |
---|---|
iscom2 | ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → (〈𝐺, 𝐻〉 ∈ Com2 ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-com2 34102 | . . . 4 ⊢ Com2 = {〈𝑥, 𝑦〉 ∣ ∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)} | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → Com2 = {〈𝑥, 𝑦〉 ∣ ∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)}) |
3 | 2 | eleq2d 2825 | . 2 ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → (〈𝐺, 𝐻〉 ∈ Com2 ↔ 〈𝐺, 𝐻〉 ∈ {〈𝑥, 𝑦〉 ∣ ∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)})) |
4 | rneq 5506 | . . . 4 ⊢ (𝑥 = 𝐺 → ran 𝑥 = ran 𝐺) | |
5 | 4 | raleqdv 3283 | . . . 4 ⊢ (𝑥 = 𝐺 → (∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ ∀𝑏 ∈ ran 𝐺(𝑎𝑦𝑏) = (𝑏𝑦𝑎))) |
6 | 4, 5 | raleqbidv 3291 | . . 3 ⊢ (𝑥 = 𝐺 → (∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝑦𝑏) = (𝑏𝑦𝑎))) |
7 | oveq 6819 | . . . . 5 ⊢ (𝑦 = 𝐻 → (𝑎𝑦𝑏) = (𝑎𝐻𝑏)) | |
8 | oveq 6819 | . . . . 5 ⊢ (𝑦 = 𝐻 → (𝑏𝑦𝑎) = (𝑏𝐻𝑎)) | |
9 | 7, 8 | eqeq12d 2775 | . . . 4 ⊢ (𝑦 = 𝐻 → ((𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ (𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
10 | 9 | 2ralbidv 3127 | . . 3 ⊢ (𝑦 = 𝐻 → (∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
11 | 6, 10 | opelopabg 5143 | . 2 ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → (〈𝐺, 𝐻〉 ∈ {〈𝑥, 𝑦〉 ∣ ∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)} ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
12 | 3, 11 | bitrd 268 | 1 ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → (〈𝐺, 𝐻〉 ∈ Com2 ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 〈cop 4327 {copab 4864 ran crn 5267 (class class class)co 6813 Com2ccm2 34101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-cnv 5274 df-dm 5276 df-rn 5277 df-iota 6012 df-fv 6057 df-ov 6816 df-com2 34102 |
This theorem is referenced by: iscrngo2 34109 iscringd 34110 |
Copyright terms: Public domain | W3C validator |