![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isconn2 | Structured version Visualization version GIF version |
Description: The predicate 𝐽 is a connected topology . (Contributed by Mario Carneiro, 10-Mar-2015.) |
Ref | Expression |
---|---|
isconn.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
isconn2 | ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isconn.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | isconn 21264 | . 2 ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) |
3 | 0opn 20757 | . . . . . . 7 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
4 | 0cld 20890 | . . . . . . 7 ⊢ (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽)) | |
5 | 3, 4 | elind 3831 | . . . . . 6 ⊢ (𝐽 ∈ Top → ∅ ∈ (𝐽 ∩ (Clsd‘𝐽))) |
6 | 1 | topopn 20759 | . . . . . . 7 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
7 | 1 | topcld 20887 | . . . . . . 7 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
8 | 6, 7 | elind 3831 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (𝐽 ∩ (Clsd‘𝐽))) |
9 | prssi 4385 | . . . . . 6 ⊢ ((∅ ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝑋 ∈ (𝐽 ∩ (Clsd‘𝐽))) → {∅, 𝑋} ⊆ (𝐽 ∩ (Clsd‘𝐽))) | |
10 | 5, 8, 9 | syl2anc 694 | . . . . 5 ⊢ (𝐽 ∈ Top → {∅, 𝑋} ⊆ (𝐽 ∩ (Clsd‘𝐽))) |
11 | 10 | biantrud 527 | . . . 4 ⊢ (𝐽 ∈ Top → ((𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋} ↔ ((𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋} ∧ {∅, 𝑋} ⊆ (𝐽 ∩ (Clsd‘𝐽))))) |
12 | eqss 3651 | . . . 4 ⊢ ((𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋} ↔ ((𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋} ∧ {∅, 𝑋} ⊆ (𝐽 ∩ (Clsd‘𝐽)))) | |
13 | 11, 12 | syl6rbbr 279 | . . 3 ⊢ (𝐽 ∈ Top → ((𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋} ↔ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋})) |
14 | 13 | pm5.32i 670 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}) ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋})) |
15 | 2, 14 | bitri 264 | 1 ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∩ cin 3606 ⊆ wss 3607 ∅c0 3948 {cpr 4212 ∪ cuni 4468 ‘cfv 5926 Topctop 20746 Clsdccld 20868 Conncconn 21262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-top 20747 df-cld 20871 df-conn 21263 |
This theorem is referenced by: indisconn 21269 dfconn2 21270 cnconn 21273 txconn 21540 filconn 21734 onsucconni 32561 |
Copyright terms: Public domain | W3C validator |