MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscusp2 Structured version   Visualization version   GIF version

Theorem iscusp2 22903
Description: The predicate "𝑊 is a complete uniform space." (Contributed by Thierry Arnoux, 15-Dec-2017.)
Hypotheses
Ref Expression
iscusp2.1 𝐵 = (Base‘𝑊)
iscusp2.2 𝑈 = (UnifSt‘𝑊)
iscusp2.3 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
iscusp2 (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu𝑈) → (𝐽 fLim 𝑐) ≠ ∅)))
Distinct variable group:   𝑊,𝑐
Allowed substitution hints:   𝐵(𝑐)   𝑈(𝑐)   𝐽(𝑐)

Proof of Theorem iscusp2
StepHypRef Expression
1 iscusp 22900 . 2 (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)))
2 iscusp2.1 . . . . 5 𝐵 = (Base‘𝑊)
32fveq2i 6666 . . . 4 (Fil‘𝐵) = (Fil‘(Base‘𝑊))
4 iscusp2.2 . . . . . . 7 𝑈 = (UnifSt‘𝑊)
54fveq2i 6666 . . . . . 6 (CauFilu𝑈) = (CauFilu‘(UnifSt‘𝑊))
65eleq2i 2902 . . . . 5 (𝑐 ∈ (CauFilu𝑈) ↔ 𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)))
7 iscusp2.3 . . . . . . 7 𝐽 = (TopOpen‘𝑊)
87oveq1i 7158 . . . . . 6 (𝐽 fLim 𝑐) = ((TopOpen‘𝑊) fLim 𝑐)
98neeq1i 3078 . . . . 5 ((𝐽 fLim 𝑐) ≠ ∅ ↔ ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)
106, 9imbi12i 353 . . . 4 ((𝑐 ∈ (CauFilu𝑈) → (𝐽 fLim 𝑐) ≠ ∅) ↔ (𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))
113, 10raleqbii 3232 . . 3 (∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu𝑈) → (𝐽 fLim 𝑐) ≠ ∅) ↔ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))
1211anbi2i 624 . 2 ((𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu𝑈) → (𝐽 fLim 𝑐) ≠ ∅)) ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)))
131, 12bitr4i 280 1 (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu𝑈) → (𝐽 fLim 𝑐) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  wne 3014  wral 3136  c0 4289  cfv 6348  (class class class)co 7148  Basecbs 16475  TopOpenctopn 16687  Filcfil 22445   fLim cflim 22534  UnifStcuss 22854  UnifSpcusp 22855  CauFiluccfilu 22887  CUnifSpccusp 22898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-iota 6307  df-fv 6356  df-ov 7151  df-cusp 22899
This theorem is referenced by:  cmetcusp1  23948
  Copyright terms: Public domain W3C validator