MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscusp2 Structured version   Visualization version   GIF version

Theorem iscusp2 22100
Description: The predicate "𝑊 is a complete uniform space." (Contributed by Thierry Arnoux, 15-Dec-2017.)
Hypotheses
Ref Expression
iscusp2.1 𝐵 = (Base‘𝑊)
iscusp2.2 𝑈 = (UnifSt‘𝑊)
iscusp2.3 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
iscusp2 (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu𝑈) → (𝐽 fLim 𝑐) ≠ ∅)))
Distinct variable group:   𝑊,𝑐
Allowed substitution hints:   𝐵(𝑐)   𝑈(𝑐)   𝐽(𝑐)

Proof of Theorem iscusp2
StepHypRef Expression
1 iscusp 22097 . 2 (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)))
2 iscusp2.1 . . . . 5 𝐵 = (Base‘𝑊)
32fveq2i 6192 . . . 4 (Fil‘𝐵) = (Fil‘(Base‘𝑊))
4 iscusp2.2 . . . . . . 7 𝑈 = (UnifSt‘𝑊)
54fveq2i 6192 . . . . . 6 (CauFilu𝑈) = (CauFilu‘(UnifSt‘𝑊))
65eleq2i 2692 . . . . 5 (𝑐 ∈ (CauFilu𝑈) ↔ 𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)))
7 iscusp2.3 . . . . . . 7 𝐽 = (TopOpen‘𝑊)
87oveq1i 6657 . . . . . 6 (𝐽 fLim 𝑐) = ((TopOpen‘𝑊) fLim 𝑐)
98neeq1i 2857 . . . . 5 ((𝐽 fLim 𝑐) ≠ ∅ ↔ ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)
106, 9imbi12i 340 . . . 4 ((𝑐 ∈ (CauFilu𝑈) → (𝐽 fLim 𝑐) ≠ ∅) ↔ (𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))
113, 10raleqbii 2989 . . 3 (∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu𝑈) → (𝐽 fLim 𝑐) ≠ ∅) ↔ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))
1211anbi2i 730 . 2 ((𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu𝑈) → (𝐽 fLim 𝑐) ≠ ∅)) ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)))
131, 12bitr4i 267 1 (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu𝑈) → (𝐽 fLim 𝑐) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1482  wcel 1989  wne 2793  wral 2911  c0 3913  cfv 5886  (class class class)co 6647  Basecbs 15851  TopOpenctopn 16076  Filcfil 21643   fLim cflim 21732  UnifStcuss 22051  UnifSpcusp 22052  CauFiluccfilu 22084  CUnifSpccusp 22095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-iota 5849  df-fv 5894  df-ov 6650  df-cusp 22096
This theorem is referenced by:  cmetcusp1  23143
  Copyright terms: Public domain W3C validator