Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscvlat Structured version   Visualization version   GIF version

Theorem iscvlat 36463
Description: The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
iscvlat.b 𝐵 = (Base‘𝐾)
iscvlat.l = (le‘𝐾)
iscvlat.j = (join‘𝐾)
iscvlat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
iscvlat (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
Distinct variable groups:   𝑞,𝑝,𝐴   𝑥,𝐵   𝑥,𝑝,𝐾,𝑞
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑞,𝑝)   (𝑥,𝑞,𝑝)   (𝑥,𝑞,𝑝)

Proof of Theorem iscvlat
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6673 . . . 4 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
2 iscvlat.a . . . 4 𝐴 = (Atoms‘𝐾)
31, 2syl6eqr 2877 . . 3 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
4 fveq2 6673 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
5 iscvlat.b . . . . . 6 𝐵 = (Base‘𝐾)
64, 5syl6eqr 2877 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
7 fveq2 6673 . . . . . . . . . 10 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
8 iscvlat.l . . . . . . . . . 10 = (le‘𝐾)
97, 8syl6eqr 2877 . . . . . . . . 9 (𝑘 = 𝐾 → (le‘𝑘) = )
109breqd 5080 . . . . . . . 8 (𝑘 = 𝐾 → (𝑝(le‘𝑘)𝑥𝑝 𝑥))
1110notbid 320 . . . . . . 7 (𝑘 = 𝐾 → (¬ 𝑝(le‘𝑘)𝑥 ↔ ¬ 𝑝 𝑥))
12 eqidd 2825 . . . . . . . 8 (𝑘 = 𝐾𝑝 = 𝑝)
13 fveq2 6673 . . . . . . . . . 10 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
14 iscvlat.j . . . . . . . . . 10 = (join‘𝐾)
1513, 14syl6eqr 2877 . . . . . . . . 9 (𝑘 = 𝐾 → (join‘𝑘) = )
1615oveqd 7176 . . . . . . . 8 (𝑘 = 𝐾 → (𝑥(join‘𝑘)𝑞) = (𝑥 𝑞))
1712, 9, 16breq123d 5083 . . . . . . 7 (𝑘 = 𝐾 → (𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞) ↔ 𝑝 (𝑥 𝑞)))
1811, 17anbi12d 632 . . . . . 6 (𝑘 = 𝐾 → ((¬ 𝑝(le‘𝑘)𝑥𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) ↔ (¬ 𝑝 𝑥𝑝 (𝑥 𝑞))))
19 eqidd 2825 . . . . . . 7 (𝑘 = 𝐾𝑞 = 𝑞)
2015oveqd 7176 . . . . . . 7 (𝑘 = 𝐾 → (𝑥(join‘𝑘)𝑝) = (𝑥 𝑝))
2119, 9, 20breq123d 5083 . . . . . 6 (𝑘 = 𝐾 → (𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝) ↔ 𝑞 (𝑥 𝑝)))
2218, 21imbi12d 347 . . . . 5 (𝑘 = 𝐾 → (((¬ 𝑝(le‘𝑘)𝑥𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝)) ↔ ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
236, 22raleqbidv 3404 . . . 4 (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)((¬ 𝑝(le‘𝑘)𝑥𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝)) ↔ ∀𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
243, 23raleqbidv 3404 . . 3 (𝑘 = 𝐾 → (∀𝑞 ∈ (Atoms‘𝑘)∀𝑥 ∈ (Base‘𝑘)((¬ 𝑝(le‘𝑘)𝑥𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝)) ↔ ∀𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
253, 24raleqbidv 3404 . 2 (𝑘 = 𝐾 → (∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)∀𝑥 ∈ (Base‘𝑘)((¬ 𝑝(le‘𝑘)𝑥𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝)) ↔ ∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
26 df-cvlat 36462 . 2 CvLat = {𝑘 ∈ AtLat ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)∀𝑥 ∈ (Base‘𝑘)((¬ 𝑝(le‘𝑘)𝑥𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝))}
2725, 26elrab2 3686 1 (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wral 3141   class class class wbr 5069  cfv 6358  (class class class)co 7159  Basecbs 16486  lecple 16575  joincjn 17557  Atomscatm 36403  AtLatcal 36404  CvLatclc 36405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-iota 6317  df-fv 6366  df-ov 7162  df-cvlat 36462
This theorem is referenced by:  iscvlat2N  36464  cvlatl  36465  cvlexch1  36468  ishlat2  36493
  Copyright terms: Public domain W3C validator