Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscvlat2N Structured version   Visualization version   GIF version

Theorem iscvlat2N 34130
Description: The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
iscvlat2.b 𝐵 = (Base‘𝐾)
iscvlat2.l = (le‘𝐾)
iscvlat2.j = (join‘𝐾)
iscvlat2.m = (meet‘𝐾)
iscvlat2.z 0 = (0.‘𝐾)
iscvlat2.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
iscvlat2N (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝𝐴𝑞𝐴𝑥𝐵 (((𝑝 𝑥) = 0𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
Distinct variable groups:   𝑞,𝑝,𝑥,𝐴   𝑥,𝐵   𝐾,𝑝,𝑞,𝑥
Allowed substitution hints:   𝐵(𝑞,𝑝)   (𝑥,𝑞,𝑝)   (𝑥,𝑞,𝑝)   (𝑥,𝑞,𝑝)   0 (𝑥,𝑞,𝑝)

Proof of Theorem iscvlat2N
StepHypRef Expression
1 iscvlat2.b . . 3 𝐵 = (Base‘𝐾)
2 iscvlat2.l . . 3 = (le‘𝐾)
3 iscvlat2.j . . 3 = (join‘𝐾)
4 iscvlat2.a . . 3 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4iscvlat 34129 . 2 (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
6 simpll 789 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑥𝐵) → 𝐾 ∈ AtLat)
7 simplrl 799 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑥𝐵) → 𝑝𝐴)
8 simpr 477 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑥𝐵) → 𝑥𝐵)
9 iscvlat2.m . . . . . . . . 9 = (meet‘𝐾)
10 iscvlat2.z . . . . . . . . 9 0 = (0.‘𝐾)
111, 2, 9, 10, 4atnle 34123 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑝𝐴𝑥𝐵) → (¬ 𝑝 𝑥 ↔ (𝑝 𝑥) = 0 ))
126, 7, 8, 11syl3anc 1323 . . . . . . 7 (((𝐾 ∈ AtLat ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑥𝐵) → (¬ 𝑝 𝑥 ↔ (𝑝 𝑥) = 0 ))
1312anbi1d 740 . . . . . 6 (((𝐾 ∈ AtLat ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑥𝐵) → ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) ↔ ((𝑝 𝑥) = 0𝑝 (𝑥 𝑞))))
1413imbi1d 331 . . . . 5 (((𝐾 ∈ AtLat ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑥𝐵) → (((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝)) ↔ (((𝑝 𝑥) = 0𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
1514ralbidva 2981 . . . 4 ((𝐾 ∈ AtLat ∧ (𝑝𝐴𝑞𝐴)) → (∀𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝)) ↔ ∀𝑥𝐵 (((𝑝 𝑥) = 0𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
16152ralbidva 2984 . . 3 (𝐾 ∈ AtLat → (∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝)) ↔ ∀𝑝𝐴𝑞𝐴𝑥𝐵 (((𝑝 𝑥) = 0𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
1716pm5.32i 668 . 2 ((𝐾 ∈ AtLat ∧ ∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))) ↔ (𝐾 ∈ AtLat ∧ ∀𝑝𝐴𝑞𝐴𝑥𝐵 (((𝑝 𝑥) = 0𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
185, 17bitri 264 1 (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝𝐴𝑞𝐴𝑥𝐵 (((𝑝 𝑥) = 0𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2908   class class class wbr 4623  cfv 5857  (class class class)co 6615  Basecbs 15800  lecple 15888  joincjn 16884  meetcmee 16885  0.cp0 16977  Atomscatm 34069  AtLatcal 34070  CvLatclc 34071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-preset 16868  df-poset 16886  df-plt 16898  df-lub 16914  df-glb 16915  df-join 16916  df-meet 16917  df-p0 16979  df-lat 16986  df-covers 34072  df-ats 34073  df-atl 34104  df-cvlat 34128
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator