MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscvs Structured version   Visualization version   GIF version

Theorem iscvs 23723
Description: A subcomplex vector space is a subcomplex module over a division ring. For example, the subcomplex modules over the rational or real or complex numbers are subcomplex vector spaces. (Contributed by AV, 4-Oct-2021.)
Assertion
Ref Expression
iscvs (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing))

Proof of Theorem iscvs
StepHypRef Expression
1 df-cvs 23720 . . 3 ℂVec = (ℂMod ∩ LVec)
21elin2 4172 . 2 (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec))
3 clmlmod 23663 . . . 4 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
4 eqid 2819 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
54islvec 19868 . . . . 5 (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ DivRing))
65a1i 11 . . . 4 (𝑊 ∈ ℂMod → (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ DivRing)))
73, 6mpbirand 705 . . 3 (𝑊 ∈ ℂMod → (𝑊 ∈ LVec ↔ (Scalar‘𝑊) ∈ DivRing))
87pm5.32i 577 . 2 ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) ↔ (𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing))
92, 8bitri 277 1 (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  wcel 2108  cfv 6348  Scalarcsca 16560  DivRingcdr 19494  LModclmod 19626  LVecclvec 19866  ℂModcclm 23658  ℂVecccvs 23719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-nul 5201
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-iota 6307  df-fv 6356  df-ov 7151  df-lvec 19867  df-clm 23659  df-cvs 23720
This theorem is referenced by:  iscvsp  23724
  Copyright terms: Public domain W3C validator