Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscyg2 Structured version   Visualization version   GIF version

Theorem iscyg2 18278
 Description: A cyclic group is a group which contains a generator. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1 𝐵 = (Base‘𝐺)
iscyg.2 · = (.g𝐺)
iscyg3.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
Assertion
Ref Expression
iscyg2 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ 𝐸 ≠ ∅))
Distinct variable groups:   𝑥,𝑛,𝐵   𝑛,𝐺,𝑥   · ,𝑛,𝑥
Allowed substitution hints:   𝐸(𝑥,𝑛)

Proof of Theorem iscyg2
StepHypRef Expression
1 iscyg.1 . . 3 𝐵 = (Base‘𝐺)
2 iscyg.2 . . 3 · = (.g𝐺)
31, 2iscyg 18275 . 2 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵))
4 iscyg3.e . . . . 5 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
54neeq1i 2857 . . . 4 (𝐸 ≠ ∅ ↔ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} ≠ ∅)
6 rabn0 3956 . . . 4 ({𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} ≠ ∅ ↔ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)
75, 6bitri 264 . . 3 (𝐸 ≠ ∅ ↔ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)
87anbi2i 730 . 2 ((𝐺 ∈ Grp ∧ 𝐸 ≠ ∅) ↔ (𝐺 ∈ Grp ∧ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵))
93, 8bitr4i 267 1 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ 𝐸 ≠ ∅))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 384   = wceq 1482   ∈ wcel 1989   ≠ wne 2793  ∃wrex 2912  {crab 2915  ∅c0 3913   ↦ cmpt 4727  ran crn 5113  ‘cfv 5886  (class class class)co 6647  ℤcz 11374  Basecbs 15851  Grpcgrp 17416  .gcmg 17534  CycGrpccyg 18273 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-mpt 4728  df-cnv 5120  df-dm 5122  df-rn 5123  df-iota 5849  df-fv 5894  df-ov 6650  df-cyg 18274 This theorem is referenced by:  iscygd  18283  iscygodd  18284  cyggex2  18292  cyggexb  18294  cygzn  19913
 Copyright terms: Public domain W3C validator