MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdir Structured version   Visualization version   GIF version

Theorem isdir 17836
Description: A condition for a relation to be a direction. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Hypothesis
Ref Expression
isdir.1 𝐴 = 𝑅
Assertion
Ref Expression
isdir (𝑅𝑉 → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ 𝐴) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ (𝐴 × 𝐴) ⊆ (𝑅𝑅)))))

Proof of Theorem isdir
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 releq 5645 . . . 4 (𝑟 = 𝑅 → (Rel 𝑟 ↔ Rel 𝑅))
2 unieq 4839 . . . . . . . 8 (𝑟 = 𝑅 𝑟 = 𝑅)
32unieqd 4841 . . . . . . 7 (𝑟 = 𝑅 𝑟 = 𝑅)
4 isdir.1 . . . . . . 7 𝐴 = 𝑅
53, 4syl6eqr 2874 . . . . . 6 (𝑟 = 𝑅 𝑟 = 𝐴)
65reseq2d 5847 . . . . 5 (𝑟 = 𝑅 → ( I ↾ 𝑟) = ( I ↾ 𝐴))
7 id 22 . . . . 5 (𝑟 = 𝑅𝑟 = 𝑅)
86, 7sseq12d 3999 . . . 4 (𝑟 = 𝑅 → (( I ↾ 𝑟) ⊆ 𝑟 ↔ ( I ↾ 𝐴) ⊆ 𝑅))
91, 8anbi12d 632 . . 3 (𝑟 = 𝑅 → ((Rel 𝑟 ∧ ( I ↾ 𝑟) ⊆ 𝑟) ↔ (Rel 𝑅 ∧ ( I ↾ 𝐴) ⊆ 𝑅)))
107, 7coeq12d 5729 . . . . 5 (𝑟 = 𝑅 → (𝑟𝑟) = (𝑅𝑅))
1110, 7sseq12d 3999 . . . 4 (𝑟 = 𝑅 → ((𝑟𝑟) ⊆ 𝑟 ↔ (𝑅𝑅) ⊆ 𝑅))
125sqxpeqd 5581 . . . . 5 (𝑟 = 𝑅 → ( 𝑟 × 𝑟) = (𝐴 × 𝐴))
13 cnveq 5738 . . . . . 6 (𝑟 = 𝑅𝑟 = 𝑅)
1413, 7coeq12d 5729 . . . . 5 (𝑟 = 𝑅 → (𝑟𝑟) = (𝑅𝑅))
1512, 14sseq12d 3999 . . . 4 (𝑟 = 𝑅 → (( 𝑟 × 𝑟) ⊆ (𝑟𝑟) ↔ (𝐴 × 𝐴) ⊆ (𝑅𝑅)))
1611, 15anbi12d 632 . . 3 (𝑟 = 𝑅 → (((𝑟𝑟) ⊆ 𝑟 ∧ ( 𝑟 × 𝑟) ⊆ (𝑟𝑟)) ↔ ((𝑅𝑅) ⊆ 𝑅 ∧ (𝐴 × 𝐴) ⊆ (𝑅𝑅))))
179, 16anbi12d 632 . 2 (𝑟 = 𝑅 → (((Rel 𝑟 ∧ ( I ↾ 𝑟) ⊆ 𝑟) ∧ ((𝑟𝑟) ⊆ 𝑟 ∧ ( 𝑟 × 𝑟) ⊆ (𝑟𝑟))) ↔ ((Rel 𝑅 ∧ ( I ↾ 𝐴) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ (𝐴 × 𝐴) ⊆ (𝑅𝑅)))))
18 df-dir 17834 . 2 DirRel = {𝑟 ∣ ((Rel 𝑟 ∧ ( I ↾ 𝑟) ⊆ 𝑟) ∧ ((𝑟𝑟) ⊆ 𝑟 ∧ ( 𝑟 × 𝑟) ⊆ (𝑟𝑟)))}
1917, 18elab2g 3667 1 (𝑅𝑉 → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ 𝐴) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ (𝐴 × 𝐴) ⊆ (𝑅𝑅)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wss 3935   cuni 4831   I cid 5453   × cxp 5547  ccnv 5548  cres 5551  ccom 5553  Rel wrel 5554  DirRelcdir 17832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rex 3144  df-rab 3147  df-in 3942  df-ss 3951  df-uni 4832  df-br 5059  df-opab 5121  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-res 5561  df-dir 17834
This theorem is referenced by:  reldir  17837  dirdm  17838  dirref  17839  dirtr  17840  dirge  17841  tsrdir  17842  filnetlem3  33723
  Copyright terms: Public domain W3C validator