Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdmn2 Structured version   Visualization version   GIF version

Theorem isdmn2 34165
Description: The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
isdmn2 (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps))

Proof of Theorem isdmn2
StepHypRef Expression
1 isdmn 34164 . 2 (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2))
2 prrngorngo 34161 . . . 4 (𝑅 ∈ PrRing → 𝑅 ∈ RingOps)
3 iscrngo 34106 . . . . 5 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2))
43baibr 983 . . . 4 (𝑅 ∈ RingOps → (𝑅 ∈ Com2 ↔ 𝑅 ∈ CRingOps))
52, 4syl 17 . . 3 (𝑅 ∈ PrRing → (𝑅 ∈ Com2 ↔ 𝑅 ∈ CRingOps))
65pm5.32i 672 . 2 ((𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2) ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps))
71, 6bitri 264 1 (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  wcel 2137  RingOpscrngo 34004  Com2ccm2 34099  CRingOpsccring 34103  PrRingcprrng 34156  Dmncdmn 34157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-rex 3054  df-rab 3057  df-v 3340  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-nul 4057  df-if 4229  df-sn 4320  df-pr 4322  df-op 4326  df-uni 4587  df-br 4803  df-iota 6010  df-fv 6055  df-crngo 34104  df-prrngo 34158  df-dmn 34159
This theorem is referenced by:  dmncrng  34166  flddmn  34168  isdmn3  34184
  Copyright terms: Public domain W3C validator