MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrngrd Structured version   Visualization version   GIF version

Theorem isdrngrd 18967
Description: Properties that determine a division ring. 𝐼 (reciprocal) is normally dependent on 𝑥 i.e. read it as 𝐼(𝑥)." This version of isdrngd 18966 requires a right reciprocal instead of left. (Contributed by NM, 10-Aug-2013.)
Hypotheses
Ref Expression
isdrngd.b (𝜑𝐵 = (Base‘𝑅))
isdrngd.t (𝜑· = (.r𝑅))
isdrngd.z (𝜑0 = (0g𝑅))
isdrngd.u (𝜑1 = (1r𝑅))
isdrngd.r (𝜑𝑅 ∈ Ring)
isdrngd.n ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ≠ 0 )
isdrngd.o (𝜑10 )
isdrngd.i ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼𝐵)
isdrngd.j ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼0 )
isdrngrd.k ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝑥 · 𝐼) = 1 )
Assertion
Ref Expression
isdrngrd (𝜑𝑅 ∈ DivRing)
Distinct variable groups:   𝑥,𝑦, 0   𝑥, 1 ,𝑦   𝑥,𝐵,𝑦   𝑦,𝐼   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝑥, · ,𝑦
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem isdrngrd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 isdrngd.b . . . 4 (𝜑𝐵 = (Base‘𝑅))
2 eqid 2752 . . . . 5 (oppr𝑅) = (oppr𝑅)
3 eqid 2752 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
42, 3opprbas 18821 . . . 4 (Base‘𝑅) = (Base‘(oppr𝑅))
51, 4syl6eq 2802 . . 3 (𝜑𝐵 = (Base‘(oppr𝑅)))
6 eqidd 2753 . . 3 (𝜑 → (.r‘(oppr𝑅)) = (.r‘(oppr𝑅)))
7 isdrngd.z . . . 4 (𝜑0 = (0g𝑅))
8 eqid 2752 . . . . 5 (0g𝑅) = (0g𝑅)
92, 8oppr0 18825 . . . 4 (0g𝑅) = (0g‘(oppr𝑅))
107, 9syl6eq 2802 . . 3 (𝜑0 = (0g‘(oppr𝑅)))
11 isdrngd.u . . . 4 (𝜑1 = (1r𝑅))
12 eqid 2752 . . . . 5 (1r𝑅) = (1r𝑅)
132, 12oppr1 18826 . . . 4 (1r𝑅) = (1r‘(oppr𝑅))
1411, 13syl6eq 2802 . . 3 (𝜑1 = (1r‘(oppr𝑅)))
15 isdrngd.r . . . 4 (𝜑𝑅 ∈ Ring)
162opprring 18823 . . . 4 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
1715, 16syl 17 . . 3 (𝜑 → (oppr𝑅) ∈ Ring)
18 eleq1w 2814 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
19 neeq1 2986 . . . . . . 7 (𝑦 = 𝑥 → (𝑦0𝑥0 ))
2018, 19anbi12d 749 . . . . . 6 (𝑦 = 𝑥 → ((𝑦𝐵𝑦0 ) ↔ (𝑥𝐵𝑥0 )))
21203anbi2d 1545 . . . . 5 (𝑦 = 𝑥 → ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) ↔ (𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑧𝐵𝑧0 ))))
22 oveq1 6812 . . . . . 6 (𝑦 = 𝑥 → (𝑦(.r‘(oppr𝑅))𝑧) = (𝑥(.r‘(oppr𝑅))𝑧))
2322neeq1d 2983 . . . . 5 (𝑦 = 𝑥 → ((𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 ↔ (𝑥(.r‘(oppr𝑅))𝑧) ≠ 0 ))
2421, 23imbi12d 333 . . . 4 (𝑦 = 𝑥 → (((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 ) ↔ ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑥(.r‘(oppr𝑅))𝑧) ≠ 0 )))
25 eleq1w 2814 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
26 neeq1 2986 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥0𝑧0 ))
2725, 26anbi12d 749 . . . . . . 7 (𝑥 = 𝑧 → ((𝑥𝐵𝑥0 ) ↔ (𝑧𝐵𝑧0 )))
28273anbi3d 1546 . . . . . 6 (𝑥 = 𝑧 → ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑥𝐵𝑥0 )) ↔ (𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 ))))
29 oveq2 6813 . . . . . . 7 (𝑥 = 𝑧 → (𝑦(.r‘(oppr𝑅))𝑥) = (𝑦(.r‘(oppr𝑅))𝑧))
3029neeq1d 2983 . . . . . 6 (𝑥 = 𝑧 → ((𝑦(.r‘(oppr𝑅))𝑥) ≠ 0 ↔ (𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 ))
3128, 30imbi12d 333 . . . . 5 (𝑥 = 𝑧 → (((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑥𝐵𝑥0 )) → (𝑦(.r‘(oppr𝑅))𝑥) ≠ 0 ) ↔ ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 )))
32 isdrngd.t . . . . . . . . . 10 (𝜑· = (.r𝑅))
33323ad2ant1 1127 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → · = (.r𝑅))
3433oveqd 6822 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) = (𝑥(.r𝑅)𝑦))
35 eqid 2752 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
36 eqid 2752 . . . . . . . . 9 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
373, 35, 2, 36opprmul 18818 . . . . . . . 8 (𝑦(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)𝑦)
3834, 37syl6eqr 2804 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) = (𝑦(.r‘(oppr𝑅))𝑥))
39 isdrngd.n . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ≠ 0 )
4038, 39eqnetrrd 2992 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑦(.r‘(oppr𝑅))𝑥) ≠ 0 )
41403com23 1120 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑥𝐵𝑥0 )) → (𝑦(.r‘(oppr𝑅))𝑥) ≠ 0 )
4231, 41chvarv 2400 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 )
4324, 42chvarv 2400 . . 3 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑥(.r‘(oppr𝑅))𝑧) ≠ 0 )
44 isdrngd.o . . 3 (𝜑10 )
45 isdrngd.i . . 3 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼𝐵)
46 isdrngd.j . . 3 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼0 )
473, 35, 2, 36opprmul 18818 . . . 4 (𝐼(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)𝐼)
4832adantr 472 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → · = (.r𝑅))
4948oveqd 6822 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝑥 · 𝐼) = (𝑥(.r𝑅)𝐼))
50 isdrngrd.k . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝑥 · 𝐼) = 1 )
5149, 50eqtr3d 2788 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝑥(.r𝑅)𝐼) = 1 )
5247, 51syl5eq 2798 . . 3 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝐼(.r‘(oppr𝑅))𝑥) = 1 )
535, 6, 10, 14, 17, 43, 44, 45, 46, 52isdrngd 18966 . 2 (𝜑 → (oppr𝑅) ∈ DivRing)
542opprdrng 18965 . 2 (𝑅 ∈ DivRing ↔ (oppr𝑅) ∈ DivRing)
5553, 54sylibr 224 1 (𝜑𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1624  wcel 2131  wne 2924  cfv 6041  (class class class)co 6805  Basecbs 16051  .rcmulr 16136  0gc0g 16294  1rcur 18693  Ringcrg 18739  opprcoppr 18814  DivRingcdr 18941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-tpos 7513  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-0g 16296  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-grp 17618  df-minusg 17619  df-mgp 18682  df-ur 18694  df-ring 18741  df-oppr 18815  df-dvdsr 18833  df-unit 18834  df-invr 18864  df-dvr 18875  df-drng 18943
This theorem is referenced by:  erngdvlem4-rN  36781
  Copyright terms: Public domain W3C validator