MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseqlg Structured version   Visualization version   GIF version

Theorem iseqlg 25660
Description: Property of a triangle being equilateral. (Contributed by Thierry Arnoux, 5-Oct-2020.)
Hypotheses
Ref Expression
iseqlg.p 𝑃 = (Base‘𝐺)
iseqlg.m = (dist‘𝐺)
iseqlg.i 𝐼 = (Itv‘𝐺)
iseqlg.l 𝐿 = (LineG‘𝐺)
iseqlg.g (𝜑𝐺 ∈ TarskiG)
iseqlg.a (𝜑𝐴𝑃)
iseqlg.b (𝜑𝐵𝑃)
iseqlg.c (𝜑𝐶𝑃)
Assertion
Ref Expression
iseqlg (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (eqltrG‘𝐺) ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐵𝐶𝐴”⟩))

Proof of Theorem iseqlg
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqlg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
2 elex 3201 . . . 4 (𝐺 ∈ TarskiG → 𝐺 ∈ V)
3 fveq2 6153 . . . . . . . 8 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
4 iseqlg.p . . . . . . . 8 𝑃 = (Base‘𝐺)
53, 4syl6eqr 2673 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
65oveq1d 6625 . . . . . 6 (𝑔 = 𝐺 → ((Base‘𝑔) ↑𝑚 (0..^3)) = (𝑃𝑚 (0..^3)))
7 fveq2 6153 . . . . . . 7 (𝑔 = 𝐺 → (cgrG‘𝑔) = (cgrG‘𝐺))
87breqd 4629 . . . . . 6 (𝑔 = 𝐺 → (𝑥(cgrG‘𝑔)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩ ↔ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩))
96, 8rabeqbidv 3184 . . . . 5 (𝑔 = 𝐺 → {𝑥 ∈ ((Base‘𝑔) ↑𝑚 (0..^3)) ∣ 𝑥(cgrG‘𝑔)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩} = {𝑥 ∈ (𝑃𝑚 (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
10 df-eqlg 25659 . . . . 5 eqltrG = (𝑔 ∈ V ↦ {𝑥 ∈ ((Base‘𝑔) ↑𝑚 (0..^3)) ∣ 𝑥(cgrG‘𝑔)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
11 ovex 6638 . . . . . 6 (𝑃𝑚 (0..^3)) ∈ V
1211rabex 4778 . . . . 5 {𝑥 ∈ (𝑃𝑚 (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩} ∈ V
139, 10, 12fvmpt 6244 . . . 4 (𝐺 ∈ V → (eqltrG‘𝐺) = {𝑥 ∈ (𝑃𝑚 (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
141, 2, 133syl 18 . . 3 (𝜑 → (eqltrG‘𝐺) = {𝑥 ∈ (𝑃𝑚 (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
1514eleq2d 2684 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (eqltrG‘𝐺) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ {𝑥 ∈ (𝑃𝑚 (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩}))
16 id 22 . . . . 5 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → 𝑥 = ⟨“𝐴𝐵𝐶”⟩)
17 fveq1 6152 . . . . . 6 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → (𝑥‘1) = (⟨“𝐴𝐵𝐶”⟩‘1))
18 fveq1 6152 . . . . . 6 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → (𝑥‘2) = (⟨“𝐴𝐵𝐶”⟩‘2))
19 fveq1 6152 . . . . . 6 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → (𝑥‘0) = (⟨“𝐴𝐵𝐶”⟩‘0))
2017, 18, 19s3eqd 13553 . . . . 5 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → ⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩ = ⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩)
2116, 20breq12d 4631 . . . 4 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → (𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩))
2221elrab 3350 . . 3 (⟨“𝐴𝐵𝐶”⟩ ∈ {𝑥 ∈ (𝑃𝑚 (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩} ↔ (⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩))
2322a1i 11 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ {𝑥 ∈ (𝑃𝑚 (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩} ↔ (⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩)))
24 iseqlg.a . . . . . . 7 (𝜑𝐴𝑃)
25 iseqlg.b . . . . . . 7 (𝜑𝐵𝑃)
26 iseqlg.c . . . . . . 7 (𝜑𝐶𝑃)
2724, 25, 26s3cld 13560 . . . . . 6 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
28 s3len 13582 . . . . . . 7 (#‘⟨“𝐴𝐵𝐶”⟩) = 3
2928a1i 11 . . . . . 6 (𝜑 → (#‘⟨“𝐴𝐵𝐶”⟩) = 3)
3027, 29jca 554 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (#‘⟨“𝐴𝐵𝐶”⟩) = 3))
31 fvex 6163 . . . . . . 7 (Base‘𝐺) ∈ V
324, 31eqeltri 2694 . . . . . 6 𝑃 ∈ V
33 3nn0 11261 . . . . . 6 3 ∈ ℕ0
34 wrdmap 13282 . . . . . 6 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (#‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3))))
3532, 33, 34mp2an 707 . . . . 5 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (#‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)))
3630, 35sylib 208 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)))
3736biantrurd 529 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩)))
38 s3fv1 13580 . . . . . 6 (𝐵𝑃 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
3925, 38syl 17 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
40 s3fv2 13581 . . . . . 6 (𝐶𝑃 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
4126, 40syl 17 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
42 s3fv0 13579 . . . . . 6 (𝐴𝑃 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
4324, 42syl 17 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
4439, 41, 43s3eqd 13553 . . . 4 (𝜑 → ⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩ = ⟨“𝐵𝐶𝐴”⟩)
4544breq2d 4630 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐵𝐶𝐴”⟩))
4637, 45bitr3d 270 . 2 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩) ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐵𝐶𝐴”⟩))
4715, 23, 463bitrd 294 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (eqltrG‘𝐺) ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐵𝐶𝐴”⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  {crab 2911  Vcvv 3189   class class class wbr 4618  cfv 5852  (class class class)co 6610  𝑚 cmap 7809  0cc0 9887  1c1 9888  2c2 11021  3c3 11022  0cn0 11243  ..^cfzo 12413  #chash 13064  Word cword 13237  ⟨“cs3 13531  Basecbs 15788  distcds 15878  TarskiGcstrkg 25242  Itvcitv 25248  LineGclng 25249  cgrGccgrg 25318  eqltrGceqlg 25658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-card 8716  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-z 11329  df-uz 11639  df-fz 12276  df-fzo 12414  df-hash 13065  df-word 13245  df-concat 13247  df-s1 13248  df-s2 13537  df-s3 13538  df-eqlg 25659
This theorem is referenced by:  iseqlgd  25661
  Copyright terms: Public domain W3C validator