MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercoll Structured version   Visualization version   GIF version

Theorem isercoll 14332
Description: Rearrange an infinite series by spacing out the terms using an order isomorphism. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z 𝑍 = (ℤ𝑀)
isercoll.m (𝜑𝑀 ∈ ℤ)
isercoll.g (𝜑𝐺:ℕ⟶𝑍)
isercoll.i ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
isercoll.0 ((𝜑𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
isercoll.f ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ ℂ)
isercoll.h ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
Assertion
Ref Expression
isercoll (𝜑 → (seq1( + , 𝐻) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹,𝑛   𝜑,𝑘,𝑛   𝑘,𝐺,𝑛   𝑘,𝐻,𝑛   𝑘,𝑀,𝑛   𝑛,𝑍
Allowed substitution hint:   𝑍(𝑘)

Proof of Theorem isercoll
Dummy variables 𝑗 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isercoll.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
2 uzssz 11651 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℤ
31, 2eqsstri 3614 . . . . . . . . 9 𝑍 ⊆ ℤ
4 isercoll.g . . . . . . . . . 10 (𝜑𝐺:ℕ⟶𝑍)
54ffvelrnda 6315 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ 𝑍)
63, 5sseldi 3581 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℤ)
7 nnz 11343 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
87ad2antlr 762 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → 𝑛 ∈ ℤ)
9 fzfid 12712 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (𝑀...𝑚) ∈ Fin)
10 ffun 6005 . . . . . . . . . . . . . . . 16 (𝐺:ℕ⟶𝑍 → Fun 𝐺)
11 funimacnv 5928 . . . . . . . . . . . . . . . 16 (Fun 𝐺 → (𝐺 “ (𝐺 “ (𝑀...𝑚))) = ((𝑀...𝑚) ∩ ran 𝐺))
124, 10, 113syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺 “ (𝐺 “ (𝑀...𝑚))) = ((𝑀...𝑚) ∩ ran 𝐺))
13 inss1 3811 . . . . . . . . . . . . . . 15 ((𝑀...𝑚) ∩ ran 𝐺) ⊆ (𝑀...𝑚)
1412, 13syl6eqss 3634 . . . . . . . . . . . . . 14 (𝜑 → (𝐺 “ (𝐺 “ (𝑀...𝑚))) ⊆ (𝑀...𝑚))
1514ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (𝐺 “ (𝐺 “ (𝑀...𝑚))) ⊆ (𝑀...𝑚))
16 ssfi 8124 . . . . . . . . . . . . 13 (((𝑀...𝑚) ∈ Fin ∧ (𝐺 “ (𝐺 “ (𝑀...𝑚))) ⊆ (𝑀...𝑚)) → (𝐺 “ (𝐺 “ (𝑀...𝑚))) ∈ Fin)
179, 15, 16syl2anc 692 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (𝐺 “ (𝐺 “ (𝑀...𝑚))) ∈ Fin)
18 hashcl 13087 . . . . . . . . . . . 12 ((𝐺 “ (𝐺 “ (𝑀...𝑚))) ∈ Fin → (#‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ∈ ℕ0)
19 nn0z 11344 . . . . . . . . . . . 12 ((#‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ∈ ℕ0 → (#‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ∈ ℤ)
2017, 18, 193syl 18 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (#‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ∈ ℤ)
21 ssid 3603 . . . . . . . . . . . . . . . . . . . 20 ℕ ⊆ ℕ
22 isercoll.m . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑀 ∈ ℤ)
23 isercoll.i . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
241, 22, 4, 23isercolllem1 14329 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ℕ ⊆ ℕ) → (𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)))
2521, 24mpan2 706 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)))
26 ffn 6002 . . . . . . . . . . . . . . . . . . . 20 (𝐺:ℕ⟶𝑍𝐺 Fn ℕ)
27 fnresdm 5958 . . . . . . . . . . . . . . . . . . . 20 (𝐺 Fn ℕ → (𝐺 ↾ ℕ) = 𝐺)
28 isoeq1 6521 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ↾ ℕ) = 𝐺 → ((𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)) ↔ 𝐺 Isom < , < (ℕ, (𝐺 “ ℕ))))
294, 26, 27, 284syl 19 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)) ↔ 𝐺 Isom < , < (ℕ, (𝐺 “ ℕ))))
3025, 29mpbid 222 . . . . . . . . . . . . . . . . . 18 (𝜑𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)))
31 isof1o 6527 . . . . . . . . . . . . . . . . . 18 (𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)) → 𝐺:ℕ–1-1-onto→(𝐺 “ ℕ))
32 f1ocnv 6106 . . . . . . . . . . . . . . . . . 18 (𝐺:ℕ–1-1-onto→(𝐺 “ ℕ) → 𝐺:(𝐺 “ ℕ)–1-1-onto→ℕ)
33 f1ofun 6096 . . . . . . . . . . . . . . . . . 18 (𝐺:(𝐺 “ ℕ)–1-1-onto→ℕ → Fun 𝐺)
3430, 31, 32, 334syl 19 . . . . . . . . . . . . . . . . 17 (𝜑 → Fun 𝐺)
35 df-f1 5852 . . . . . . . . . . . . . . . . 17 (𝐺:ℕ–1-1𝑍 ↔ (𝐺:ℕ⟶𝑍 ∧ Fun 𝐺))
364, 34, 35sylanbrc 697 . . . . . . . . . . . . . . . 16 (𝜑𝐺:ℕ–1-1𝑍)
3736ad2antrr 761 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → 𝐺:ℕ–1-1𝑍)
38 elfznn 12312 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (1...𝑛) → 𝑦 ∈ ℕ)
3938ssriv 3587 . . . . . . . . . . . . . . 15 (1...𝑛) ⊆ ℕ
40 ovex 6632 . . . . . . . . . . . . . . . 16 (1...𝑛) ∈ V
4140f1imaen 7962 . . . . . . . . . . . . . . 15 ((𝐺:ℕ–1-1𝑍 ∧ (1...𝑛) ⊆ ℕ) → (𝐺 “ (1...𝑛)) ≈ (1...𝑛))
4237, 39, 41sylancl 693 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (𝐺 “ (1...𝑛)) ≈ (1...𝑛))
43 fzfid 12712 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (1...𝑛) ∈ Fin)
44 enfii 8121 . . . . . . . . . . . . . . . 16 (((1...𝑛) ∈ Fin ∧ (𝐺 “ (1...𝑛)) ≈ (1...𝑛)) → (𝐺 “ (1...𝑛)) ∈ Fin)
4543, 42, 44syl2anc 692 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (𝐺 “ (1...𝑛)) ∈ Fin)
46 hashen 13075 . . . . . . . . . . . . . . 15 (((𝐺 “ (1...𝑛)) ∈ Fin ∧ (1...𝑛) ∈ Fin) → ((#‘(𝐺 “ (1...𝑛))) = (#‘(1...𝑛)) ↔ (𝐺 “ (1...𝑛)) ≈ (1...𝑛)))
4745, 43, 46syl2anc 692 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → ((#‘(𝐺 “ (1...𝑛))) = (#‘(1...𝑛)) ↔ (𝐺 “ (1...𝑛)) ≈ (1...𝑛)))
4842, 47mpbird 247 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (#‘(𝐺 “ (1...𝑛))) = (#‘(1...𝑛)))
49 nnnn0 11243 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
5049ad2antlr 762 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → 𝑛 ∈ ℕ0)
51 hashfz1 13074 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (#‘(1...𝑛)) = 𝑛)
5250, 51syl 17 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (#‘(1...𝑛)) = 𝑛)
5348, 52eqtrd 2655 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (#‘(𝐺 “ (1...𝑛))) = 𝑛)
5438adantl 482 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝑦 ∈ ℕ)
55 zssre 11328 . . . . . . . . . . . . . . . . . . . . . 22 ℤ ⊆ ℝ
563, 55sstri 3592 . . . . . . . . . . . . . . . . . . . . 21 𝑍 ⊆ ℝ
574ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → 𝐺:ℕ⟶𝑍)
58 ffvelrn 6313 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺:ℕ⟶𝑍𝑦 ∈ ℕ) → (𝐺𝑦) ∈ 𝑍)
5957, 38, 58syl2an 494 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑦) ∈ 𝑍)
6056, 59sseldi 3581 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑦) ∈ ℝ)
615ad2antrr 761 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑛) ∈ 𝑍)
6256, 61sseldi 3581 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑛) ∈ ℝ)
63 eluzelz 11641 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ (ℤ‘(𝐺𝑛)) → 𝑚 ∈ ℤ)
6463ad2antlr 762 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝑚 ∈ ℤ)
6564zred 11426 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝑚 ∈ ℝ)
66 elfzle2 12287 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (1...𝑛) → 𝑦𝑛)
6766adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝑦𝑛)
6830ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)))
69 simpllr 798 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝑛 ∈ ℕ)
70 isorel 6530 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)) ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ ℕ)) → (𝑛 < 𝑦 ↔ (𝐺𝑛) < (𝐺𝑦)))
7168, 69, 54, 70syl12anc 1321 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝑛 < 𝑦 ↔ (𝐺𝑛) < (𝐺𝑦)))
7271notbid 308 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (¬ 𝑛 < 𝑦 ↔ ¬ (𝐺𝑛) < (𝐺𝑦)))
7354nnred 10979 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝑦 ∈ ℝ)
7469nnred 10979 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝑛 ∈ ℝ)
7573, 74lenltd 10127 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝑦𝑛 ↔ ¬ 𝑛 < 𝑦))
7660, 62lenltd 10127 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → ((𝐺𝑦) ≤ (𝐺𝑛) ↔ ¬ (𝐺𝑛) < (𝐺𝑦)))
7772, 75, 763bitr4d 300 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝑦𝑛 ↔ (𝐺𝑦) ≤ (𝐺𝑛)))
7867, 77mpbid 222 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑦) ≤ (𝐺𝑛))
79 eluzle 11644 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (ℤ‘(𝐺𝑛)) → (𝐺𝑛) ≤ 𝑚)
8079ad2antlr 762 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑛) ≤ 𝑚)
8160, 62, 65, 78, 80letrd 10138 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑦) ≤ 𝑚)
8259, 1syl6eleq 2708 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑦) ∈ (ℤ𝑀))
83 elfz5 12276 . . . . . . . . . . . . . . . . . . . 20 (((𝐺𝑦) ∈ (ℤ𝑀) ∧ 𝑚 ∈ ℤ) → ((𝐺𝑦) ∈ (𝑀...𝑚) ↔ (𝐺𝑦) ≤ 𝑚))
8482, 64, 83syl2anc 692 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → ((𝐺𝑦) ∈ (𝑀...𝑚) ↔ (𝐺𝑦) ≤ 𝑚))
8581, 84mpbird 247 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑦) ∈ (𝑀...𝑚))
8657, 26syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → 𝐺 Fn ℕ)
8786adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝐺 Fn ℕ)
88 elpreima 6293 . . . . . . . . . . . . . . . . . . 19 (𝐺 Fn ℕ → (𝑦 ∈ (𝐺 “ (𝑀...𝑚)) ↔ (𝑦 ∈ ℕ ∧ (𝐺𝑦) ∈ (𝑀...𝑚))))
8987, 88syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝑦 ∈ (𝐺 “ (𝑀...𝑚)) ↔ (𝑦 ∈ ℕ ∧ (𝐺𝑦) ∈ (𝑀...𝑚))))
9054, 85, 89mpbir2and 956 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝑦 ∈ (𝐺 “ (𝑀...𝑚)))
9190ex 450 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (𝑦 ∈ (1...𝑛) → 𝑦 ∈ (𝐺 “ (𝑀...𝑚))))
9291ssrdv 3589 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (1...𝑛) ⊆ (𝐺 “ (𝑀...𝑚)))
93 imass2 5460 . . . . . . . . . . . . . . 15 ((1...𝑛) ⊆ (𝐺 “ (𝑀...𝑚)) → (𝐺 “ (1...𝑛)) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑚))))
9492, 93syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (𝐺 “ (1...𝑛)) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑚))))
95 ssdomg 7945 . . . . . . . . . . . . . 14 ((𝐺 “ (𝐺 “ (𝑀...𝑚))) ∈ Fin → ((𝐺 “ (1...𝑛)) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑚))) → (𝐺 “ (1...𝑛)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑚)))))
9617, 94, 95sylc 65 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (𝐺 “ (1...𝑛)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑚))))
97 hashdom 13108 . . . . . . . . . . . . . 14 (((𝐺 “ (1...𝑛)) ∈ Fin ∧ (𝐺 “ (𝐺 “ (𝑀...𝑚))) ∈ Fin) → ((#‘(𝐺 “ (1...𝑛))) ≤ (#‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ↔ (𝐺 “ (1...𝑛)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑚)))))
9845, 17, 97syl2anc 692 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → ((#‘(𝐺 “ (1...𝑛))) ≤ (#‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ↔ (𝐺 “ (1...𝑛)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑚)))))
9996, 98mpbird 247 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (#‘(𝐺 “ (1...𝑛))) ≤ (#‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))))
10053, 99eqbrtrrd 4637 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → 𝑛 ≤ (#‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))))
101 eluz2 11637 . . . . . . . . . . 11 ((#‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ∈ (ℤ𝑛) ↔ (𝑛 ∈ ℤ ∧ (#‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ∈ ℤ ∧ 𝑛 ≤ (#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))))
1028, 20, 100, 101syl3anbrc 1244 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (#‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ∈ (ℤ𝑛))
103 fveq2 6148 . . . . . . . . . . . . 13 (𝑘 = (#‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) → (seq1( + , 𝐻)‘𝑘) = (seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))))
104103eleq1d 2683 . . . . . . . . . . . 12 (𝑘 = (#‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) → ((seq1( + , 𝐻)‘𝑘) ∈ ℂ ↔ (seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ))
105103oveq1d 6619 . . . . . . . . . . . . . 14 (𝑘 = (#‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) → ((seq1( + , 𝐻)‘𝑘) − 𝐴) = ((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴))
106105fveq2d 6152 . . . . . . . . . . . . 13 (𝑘 = (#‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) → (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) = (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)))
107106breq1d 4623 . . . . . . . . . . . 12 (𝑘 = (#‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) → ((abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥 ↔ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥))
108104, 107anbi12d 746 . . . . . . . . . . 11 (𝑘 = (#‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) → (((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) ↔ ((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
109108rspcv 3291 . . . . . . . . . 10 ((#‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ∈ (ℤ𝑛) → (∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) → ((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
110102, 109syl 17 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) → ((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
111110ralrimdva 2963 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) → ∀𝑚 ∈ (ℤ‘(𝐺𝑛))((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
112 fveq2 6148 . . . . . . . . . 10 (𝑗 = (𝐺𝑛) → (ℤ𝑗) = (ℤ‘(𝐺𝑛)))
113112raleqdv 3133 . . . . . . . . 9 (𝑗 = (𝐺𝑛) → (∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) ↔ ∀𝑚 ∈ (ℤ‘(𝐺𝑛))((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
114113rspcev 3295 . . . . . . . 8 (((𝐺𝑛) ∈ ℤ ∧ ∀𝑚 ∈ (ℤ‘(𝐺𝑛))((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)) → ∃𝑗 ∈ ℤ ∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥))
1156, 111, 114syl6an 567 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) → ∃𝑗 ∈ ℤ ∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
116115rexlimdva 3024 . . . . . 6 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) → ∃𝑗 ∈ ℤ ∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
117 1nn 10975 . . . . . . . . 9 1 ∈ ℕ
118 ffvelrn 6313 . . . . . . . . 9 ((𝐺:ℕ⟶𝑍 ∧ 1 ∈ ℕ) → (𝐺‘1) ∈ 𝑍)
1194, 117, 118sylancl 693 . . . . . . . 8 (𝜑 → (𝐺‘1) ∈ 𝑍)
120119, 1syl6eleq 2708 . . . . . . 7 (𝜑 → (𝐺‘1) ∈ (ℤ𝑀))
121 eluzelz 11641 . . . . . . 7 ((𝐺‘1) ∈ (ℤ𝑀) → (𝐺‘1) ∈ ℤ)
122 eqid 2621 . . . . . . . 8 (ℤ‘(𝐺‘1)) = (ℤ‘(𝐺‘1))
123122rexuz3 14022 . . . . . . 7 ((𝐺‘1) ∈ ℤ → (∃𝑗 ∈ (ℤ‘(𝐺‘1))∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
124120, 121, 1233syl 18 . . . . . 6 (𝜑 → (∃𝑗 ∈ (ℤ‘(𝐺‘1))∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
125116, 124sylibrd 249 . . . . 5 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) → ∃𝑗 ∈ (ℤ‘(𝐺‘1))∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
126 fzfid 12712 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) → (𝑀...𝑗) ∈ Fin)
127 funimacnv 5928 . . . . . . . . . . . 12 (Fun 𝐺 → (𝐺 “ (𝐺 “ (𝑀...𝑗))) = ((𝑀...𝑗) ∩ ran 𝐺))
1284, 10, 1273syl 18 . . . . . . . . . . 11 (𝜑 → (𝐺 “ (𝐺 “ (𝑀...𝑗))) = ((𝑀...𝑗) ∩ ran 𝐺))
129 inss1 3811 . . . . . . . . . . 11 ((𝑀...𝑗) ∩ ran 𝐺) ⊆ (𝑀...𝑗)
130128, 129syl6eqss 3634 . . . . . . . . . 10 (𝜑 → (𝐺 “ (𝐺 “ (𝑀...𝑗))) ⊆ (𝑀...𝑗))
131130adantr 481 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑗))) ⊆ (𝑀...𝑗))
132 ssfi 8124 . . . . . . . . 9 (((𝑀...𝑗) ∈ Fin ∧ (𝐺 “ (𝐺 “ (𝑀...𝑗))) ⊆ (𝑀...𝑗)) → (𝐺 “ (𝐺 “ (𝑀...𝑗))) ∈ Fin)
133126, 131, 132syl2anc 692 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑗))) ∈ Fin)
134 hashcl 13087 . . . . . . . 8 ((𝐺 “ (𝐺 “ (𝑀...𝑗))) ∈ Fin → (#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℕ0)
135 nn0p1nn 11276 . . . . . . . 8 ((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℕ0 → ((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) ∈ ℕ)
136133, 134, 1353syl 18 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) → ((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) ∈ ℕ)
137 eluzle 11644 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1)) → ((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) ≤ 𝑘)
138137adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) ≤ 𝑘)
139133adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝐺 “ (𝐺 “ (𝑀...𝑗))) ∈ Fin)
140 nn0z 11344 . . . . . . . . . . . . . . . 16 ((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℕ0 → (#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℤ)
141139, 134, 1403syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℤ)
142 eluzelz 11641 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1)) → 𝑘 ∈ ℤ)
143142adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → 𝑘 ∈ ℤ)
144 zltp1le 11371 . . . . . . . . . . . . . . 15 (((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) < 𝑘 ↔ ((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) ≤ 𝑘))
145141, 143, 144syl2anc 692 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) < 𝑘 ↔ ((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) ≤ 𝑘))
146138, 145mpbird 247 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) < 𝑘)
147 nn0re 11245 . . . . . . . . . . . . . . . 16 ((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℕ0 → (#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℝ)
148133, 134, 1473syl 18 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) → (#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℝ)
149148adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℝ)
150 eluznn 11702 . . . . . . . . . . . . . . . 16 ((((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → 𝑘 ∈ ℕ)
151136, 150sylan 488 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → 𝑘 ∈ ℕ)
152151nnred 10979 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → 𝑘 ∈ ℝ)
153149, 152ltnled 10128 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) < 𝑘 ↔ ¬ 𝑘 ≤ (#‘(𝐺 “ (𝐺 “ (𝑀...𝑗))))))
154146, 153mpbid 222 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ¬ 𝑘 ≤ (#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))))
155 fzss2 12323 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ‘(𝐺𝑘)) → (𝑀...(𝐺𝑘)) ⊆ (𝑀...𝑗))
156 imass2 5460 . . . . . . . . . . . . . 14 ((𝑀...(𝐺𝑘)) ⊆ (𝑀...𝑗) → (𝐺 “ (𝑀...(𝐺𝑘))) ⊆ (𝐺 “ (𝑀...𝑗)))
157 imass2 5460 . . . . . . . . . . . . . 14 ((𝐺 “ (𝑀...(𝐺𝑘))) ⊆ (𝐺 “ (𝑀...𝑗)) → (𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑗))))
158155, 156, 1573syl 18 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ‘(𝐺𝑘)) → (𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑗))))
159 ssdomg 7945 . . . . . . . . . . . . . . 15 ((𝐺 “ (𝐺 “ (𝑀...𝑗))) ∈ Fin → ((𝐺 “ (1...𝑘)) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑗))) → (𝐺 “ (1...𝑘)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑗)))))
160139, 159syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((𝐺 “ (1...𝑘)) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑗))) → (𝐺 “ (1...𝑘)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑗)))))
1614ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → 𝐺:ℕ⟶𝑍)
162161ffvelrnda 6315 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ 𝑍)
163162, 1syl6eleq 2708 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ (ℤ𝑀))
164161, 151ffvelrnd 6316 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝐺𝑘) ∈ 𝑍)
1653, 164sseldi 3581 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝐺𝑘) ∈ ℤ)
166165adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → (𝐺𝑘) ∈ ℤ)
167 elfz5 12276 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺𝑥) ∈ (ℤ𝑀) ∧ (𝐺𝑘) ∈ ℤ) → ((𝐺𝑥) ∈ (𝑀...(𝐺𝑘)) ↔ (𝐺𝑥) ≤ (𝐺𝑘)))
168163, 166, 167syl2anc 692 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → ((𝐺𝑥) ∈ (𝑀...(𝐺𝑘)) ↔ (𝐺𝑥) ≤ (𝐺𝑘)))
16930ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → 𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)))
170 nnssre 10968 . . . . . . . . . . . . . . . . . . . . . . 23 ℕ ⊆ ℝ
171 ressxr 10027 . . . . . . . . . . . . . . . . . . . . . . 23 ℝ ⊆ ℝ*
172170, 171sstri 3592 . . . . . . . . . . . . . . . . . . . . . 22 ℕ ⊆ ℝ*
173172a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → ℕ ⊆ ℝ*)
174 imassrn 5436 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 “ ℕ) ⊆ ran 𝐺
175161adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → 𝐺:ℕ⟶𝑍)
176 frn 6010 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐺:ℕ⟶𝑍 → ran 𝐺𝑍)
177175, 176syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → ran 𝐺𝑍)
178177, 56syl6ss 3595 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → ran 𝐺 ⊆ ℝ)
179174, 178syl5ss 3594 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → (𝐺 “ ℕ) ⊆ ℝ)
180179, 171syl6ss 3595 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → (𝐺 “ ℕ) ⊆ ℝ*)
181 simpr 477 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
182151adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → 𝑘 ∈ ℕ)
183 leisorel 13182 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)) ∧ (ℕ ⊆ ℝ* ∧ (𝐺 “ ℕ) ⊆ ℝ*) ∧ (𝑥 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝑥𝑘 ↔ (𝐺𝑥) ≤ (𝐺𝑘)))
184169, 173, 180, 181, 182, 183syl122anc 1332 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → (𝑥𝑘 ↔ (𝐺𝑥) ≤ (𝐺𝑘)))
185168, 184bitr4d 271 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → ((𝐺𝑥) ∈ (𝑀...(𝐺𝑘)) ↔ 𝑥𝑘))
186185pm5.32da 672 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((𝑥 ∈ ℕ ∧ (𝐺𝑥) ∈ (𝑀...(𝐺𝑘))) ↔ (𝑥 ∈ ℕ ∧ 𝑥𝑘)))
187 elpreima 6293 . . . . . . . . . . . . . . . . . . 19 (𝐺 Fn ℕ → (𝑥 ∈ (𝐺 “ (𝑀...(𝐺𝑘))) ↔ (𝑥 ∈ ℕ ∧ (𝐺𝑥) ∈ (𝑀...(𝐺𝑘)))))
188161, 26, 1873syl 18 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝑥 ∈ (𝐺 “ (𝑀...(𝐺𝑘))) ↔ (𝑥 ∈ ℕ ∧ (𝐺𝑥) ∈ (𝑀...(𝐺𝑘)))))
189 fznn 12350 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℤ → (𝑥 ∈ (1...𝑘) ↔ (𝑥 ∈ ℕ ∧ 𝑥𝑘)))
190143, 189syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝑥 ∈ (1...𝑘) ↔ (𝑥 ∈ ℕ ∧ 𝑥𝑘)))
191186, 188, 1903bitr4d 300 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝑥 ∈ (𝐺 “ (𝑀...(𝐺𝑘))) ↔ 𝑥 ∈ (1...𝑘)))
192191eqrdv 2619 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝐺 “ (𝑀...(𝐺𝑘))) = (1...𝑘))
193192imaeq2d 5425 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))) = (𝐺 “ (1...𝑘)))
194193sseq1d 3611 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑗))) ↔ (𝐺 “ (1...𝑘)) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑗)))))
19536ad2antrr 761 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → 𝐺:ℕ–1-1𝑍)
196 elfznn 12312 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (1...𝑘) → 𝑥 ∈ ℕ)
197196ssriv 3587 . . . . . . . . . . . . . . . . . . 19 (1...𝑘) ⊆ ℕ
198 ovex 6632 . . . . . . . . . . . . . . . . . . . 20 (1...𝑘) ∈ V
199198f1imaen 7962 . . . . . . . . . . . . . . . . . . 19 ((𝐺:ℕ–1-1𝑍 ∧ (1...𝑘) ⊆ ℕ) → (𝐺 “ (1...𝑘)) ≈ (1...𝑘))
200195, 197, 199sylancl 693 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝐺 “ (1...𝑘)) ≈ (1...𝑘))
201 fzfid 12712 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (1...𝑘) ∈ Fin)
202 enfii 8121 . . . . . . . . . . . . . . . . . . . 20 (((1...𝑘) ∈ Fin ∧ (𝐺 “ (1...𝑘)) ≈ (1...𝑘)) → (𝐺 “ (1...𝑘)) ∈ Fin)
203201, 200, 202syl2anc 692 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝐺 “ (1...𝑘)) ∈ Fin)
204 hashen 13075 . . . . . . . . . . . . . . . . . . 19 (((𝐺 “ (1...𝑘)) ∈ Fin ∧ (1...𝑘) ∈ Fin) → ((#‘(𝐺 “ (1...𝑘))) = (#‘(1...𝑘)) ↔ (𝐺 “ (1...𝑘)) ≈ (1...𝑘)))
205203, 201, 204syl2anc 692 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((#‘(𝐺 “ (1...𝑘))) = (#‘(1...𝑘)) ↔ (𝐺 “ (1...𝑘)) ≈ (1...𝑘)))
206200, 205mpbird 247 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (#‘(𝐺 “ (1...𝑘))) = (#‘(1...𝑘)))
207 nnnn0 11243 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
208 hashfz1 13074 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (#‘(1...𝑘)) = 𝑘)
209151, 207, 2083syl 18 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (#‘(1...𝑘)) = 𝑘)
210206, 209eqtrd 2655 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (#‘(𝐺 “ (1...𝑘))) = 𝑘)
211210breq1d 4623 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((#‘(𝐺 “ (1...𝑘))) ≤ (#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ↔ 𝑘 ≤ (#‘(𝐺 “ (𝐺 “ (𝑀...𝑗))))))
212 hashdom 13108 . . . . . . . . . . . . . . . 16 (((𝐺 “ (1...𝑘)) ∈ Fin ∧ (𝐺 “ (𝐺 “ (𝑀...𝑗))) ∈ Fin) → ((#‘(𝐺 “ (1...𝑘))) ≤ (#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ↔ (𝐺 “ (1...𝑘)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑗)))))
213203, 139, 212syl2anc 692 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((#‘(𝐺 “ (1...𝑘))) ≤ (#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ↔ (𝐺 “ (1...𝑘)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑗)))))
214211, 213bitr3d 270 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝑘 ≤ (#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ↔ (𝐺 “ (1...𝑘)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑗)))))
215160, 194, 2143imtr4d 283 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑗))) → 𝑘 ≤ (#‘(𝐺 “ (𝐺 “ (𝑀...𝑗))))))
216158, 215syl5 34 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝑗 ∈ (ℤ‘(𝐺𝑘)) → 𝑘 ≤ (#‘(𝐺 “ (𝐺 “ (𝑀...𝑗))))))
217154, 216mtod 189 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ¬ 𝑗 ∈ (ℤ‘(𝐺𝑘)))
218 eluzelz 11641 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ‘(𝐺‘1)) → 𝑗 ∈ ℤ)
219218ad2antlr 762 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → 𝑗 ∈ ℤ)
220 uztric 11653 . . . . . . . . . . . . 13 (((𝐺𝑘) ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑗 ∈ (ℤ‘(𝐺𝑘)) ∨ (𝐺𝑘) ∈ (ℤ𝑗)))
221165, 219, 220syl2anc 692 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝑗 ∈ (ℤ‘(𝐺𝑘)) ∨ (𝐺𝑘) ∈ (ℤ𝑗)))
222221ord 392 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (¬ 𝑗 ∈ (ℤ‘(𝐺𝑘)) → (𝐺𝑘) ∈ (ℤ𝑗)))
223217, 222mpd 15 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝐺𝑘) ∈ (ℤ𝑗))
224 oveq2 6612 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝐺𝑘) → (𝑀...𝑚) = (𝑀...(𝐺𝑘)))
225224imaeq2d 5425 . . . . . . . . . . . . . . . 16 (𝑚 = (𝐺𝑘) → (𝐺 “ (𝑀...𝑚)) = (𝐺 “ (𝑀...(𝐺𝑘))))
226225imaeq2d 5425 . . . . . . . . . . . . . . 15 (𝑚 = (𝐺𝑘) → (𝐺 “ (𝐺 “ (𝑀...𝑚))) = (𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))
227226fveq2d 6152 . . . . . . . . . . . . . 14 (𝑚 = (𝐺𝑘) → (#‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) = (#‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘))))))
228227fveq2d 6152 . . . . . . . . . . . . 13 (𝑚 = (𝐺𝑘) → (seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) = (seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))))
229228eleq1d 2683 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑘) → ((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ↔ (seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) ∈ ℂ))
230228oveq1d 6619 . . . . . . . . . . . . . 14 (𝑚 = (𝐺𝑘) → ((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴) = ((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴))
231230fveq2d 6152 . . . . . . . . . . . . 13 (𝑚 = (𝐺𝑘) → (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) = (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴)))
232231breq1d 4623 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑘) → ((abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥 ↔ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴)) < 𝑥))
233229, 232anbi12d 746 . . . . . . . . . . 11 (𝑚 = (𝐺𝑘) → (((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) ↔ ((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴)) < 𝑥)))
234233rspcv 3291 . . . . . . . . . 10 ((𝐺𝑘) ∈ (ℤ𝑗) → (∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) → ((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴)) < 𝑥)))
235223, 234syl 17 . . . . . . . . 9 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) → ((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴)) < 𝑥)))
236193fveq2d 6152 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (#‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘))))) = (#‘(𝐺 “ (1...𝑘))))
237236, 210eqtrd 2655 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (#‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘))))) = 𝑘)
238237fveq2d 6152 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) = (seq1( + , 𝐻)‘𝑘))
239238eleq1d 2683 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) ∈ ℂ ↔ (seq1( + , 𝐻)‘𝑘) ∈ ℂ))
240238oveq1d 6619 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴) = ((seq1( + , 𝐻)‘𝑘) − 𝐴))
241240fveq2d 6152 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴)) = (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)))
242241breq1d 4623 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴)) < 𝑥 ↔ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥))
243239, 242anbi12d 746 . . . . . . . . 9 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴)) < 𝑥) ↔ ((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥)))
244235, 243sylibd 229 . . . . . . . 8 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) → ((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥)))
245244ralrimdva 2963 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) → (∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) → ∀𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥)))
246 fveq2 6148 . . . . . . . . 9 (𝑛 = ((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) → (ℤ𝑛) = (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1)))
247246raleqdv 3133 . . . . . . . 8 (𝑛 = ((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) → (∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥)))
248247rspcev 3295 . . . . . . 7 ((((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) ∈ ℕ ∧ ∀𝑘 ∈ (ℤ‘((#‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥)) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥))
249136, 245, 248syl6an 567 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) → (∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥)))
250249rexlimdva 3024 . . . . 5 (𝜑 → (∃𝑗 ∈ (ℤ‘(𝐺‘1))∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥)))
251125, 250impbid 202 . . . 4 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ (ℤ‘(𝐺‘1))∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
252251ralbidv 2980 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ‘(𝐺‘1))∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
253252anbi2d 739 . 2 (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥)) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ‘(𝐺‘1))∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥))))
254 nnuz 11667 . . 3 ℕ = (ℤ‘1)
255 1zzd 11352 . . 3 (𝜑 → 1 ∈ ℤ)
256 seqex 12743 . . . 4 seq1( + , 𝐻) ∈ V
257256a1i 11 . . 3 (𝜑 → seq1( + , 𝐻) ∈ V)
258 eqidd 2622 . . 3 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘𝑘) = (seq1( + , 𝐻)‘𝑘))
259254, 255, 257, 258clim2 14169 . 2 (𝜑 → (seq1( + , 𝐻) ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥))))
260120, 121syl 17 . . 3 (𝜑 → (𝐺‘1) ∈ ℤ)
261 seqex 12743 . . . 4 seq𝑀( + , 𝐹) ∈ V
262261a1i 11 . . 3 (𝜑 → seq𝑀( + , 𝐹) ∈ V)
263 isercoll.0 . . . 4 ((𝜑𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
264 isercoll.f . . . 4 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ ℂ)
265 isercoll.h . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
2661, 22, 4, 23, 263, 264, 265isercolllem3 14331 . . 3 ((𝜑𝑚 ∈ (ℤ‘(𝐺‘1))) → (seq𝑀( + , 𝐹)‘𝑚) = (seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))))
267122, 260, 262, 266clim2 14169 . 2 (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ‘(𝐺‘1))∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥))))
268253, 259, 2673bitr4d 300 1 (𝜑 → (seq1( + , 𝐻) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  Vcvv 3186  cdif 3552  cin 3554  wss 3555   class class class wbr 4613  ccnv 5073  ran crn 5075  cres 5076  cima 5077  Fun wfun 5841   Fn wfn 5842  wf 5843  1-1wf1 5844  1-1-ontowf1o 5846  cfv 5847   Isom wiso 5848  (class class class)co 6604  cen 7896  cdom 7897  Fincfn 7899  cc 9878  cr 9879  0cc0 9880  1c1 9881   + caddc 9883  *cxr 10017   < clt 10018  cle 10019  cmin 10210  cn 10964  0cn0 11236  cz 11321  cuz 11631  +crp 11776  ...cfz 12268  seqcseq 12741  #chash 13057  abscabs 13908  cli 14149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-fz 12269  df-seq 12742  df-hash 13058  df-clim 14153
This theorem is referenced by:  isercoll2  14333
  Copyright terms: Public domain W3C validator