MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercoll2 Structured version   Visualization version   GIF version

Theorem isercoll2 14333
Description: Generalize isercoll 14332 so that both sequences have arbitrary starting point. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll2.z 𝑍 = (ℤ𝑀)
isercoll2.w 𝑊 = (ℤ𝑁)
isercoll2.m (𝜑𝑀 ∈ ℤ)
isercoll2.n (𝜑𝑁 ∈ ℤ)
isercoll2.g (𝜑𝐺:𝑍𝑊)
isercoll2.i ((𝜑𝑘𝑍) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
isercoll2.0 ((𝜑𝑛 ∈ (𝑊 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
isercoll2.f ((𝜑𝑛𝑊) → (𝐹𝑛) ∈ ℂ)
isercoll2.h ((𝜑𝑘𝑍) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
Assertion
Ref Expression
isercoll2 (𝜑 → (seq𝑀( + , 𝐻) ⇝ 𝐴 ↔ seq𝑁( + , 𝐹) ⇝ 𝐴))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹,𝑛   𝑘,𝐺,𝑛   𝑘,𝐻,𝑛   𝑛,𝑁   𝑘,𝑀,𝑛   𝜑,𝑘,𝑛   𝑛,𝑊   𝑘,𝑍
Allowed substitution hints:   𝑁(𝑘)   𝑊(𝑘)   𝑍(𝑛)

Proof of Theorem isercoll2
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isercoll2.z . . 3 𝑍 = (ℤ𝑀)
2 isercoll2.m . . 3 (𝜑𝑀 ∈ ℤ)
3 1z 11351 . . . 4 1 ∈ ℤ
4 zsubcl 11363 . . . 4 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 − 𝑀) ∈ ℤ)
53, 2, 4sylancr 694 . . 3 (𝜑 → (1 − 𝑀) ∈ ℤ)
6 seqex 12743 . . . 4 seq𝑀( + , 𝐻) ∈ V
76a1i 11 . . 3 (𝜑 → seq𝑀( + , 𝐻) ∈ V)
8 seqex 12743 . . . 4 seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) ∈ V
98a1i 11 . . 3 (𝜑 → seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) ∈ V)
10 simpr 477 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘𝑍)
1110, 1syl6eleq 2708 . . . . 5 ((𝜑𝑘𝑍) → 𝑘 ∈ (ℤ𝑀))
125adantr 481 . . . . 5 ((𝜑𝑘𝑍) → (1 − 𝑀) ∈ ℤ)
13 simpl 473 . . . . . 6 ((𝜑𝑘𝑍) → 𝜑)
14 elfzuz 12280 . . . . . . 7 (𝑗 ∈ (𝑀...𝑘) → 𝑗 ∈ (ℤ𝑀))
1514, 1syl6eleqr 2709 . . . . . 6 (𝑗 ∈ (𝑀...𝑘) → 𝑗𝑍)
16 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → 𝑗𝑍)
1716, 1syl6eleq 2708 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
18 eluzelz 11641 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
1917, 18syl 17 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → 𝑗 ∈ ℤ)
2019zcnd 11427 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗 ∈ ℂ)
212zcnd 11427 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
2221adantr 481 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑀 ∈ ℂ)
23 1cnd 10000 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 1 ∈ ℂ)
2420, 22, 23subadd23d 10358 . . . . . . . . 9 ((𝜑𝑗𝑍) → ((𝑗𝑀) + 1) = (𝑗 + (1 − 𝑀)))
25 uznn0sub 11663 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → (𝑗𝑀) ∈ ℕ0)
2617, 25syl 17 . . . . . . . . . 10 ((𝜑𝑗𝑍) → (𝑗𝑀) ∈ ℕ0)
27 nn0p1nn 11276 . . . . . . . . . 10 ((𝑗𝑀) ∈ ℕ0 → ((𝑗𝑀) + 1) ∈ ℕ)
2826, 27syl 17 . . . . . . . . 9 ((𝜑𝑗𝑍) → ((𝑗𝑀) + 1) ∈ ℕ)
2924, 28eqeltrrd 2699 . . . . . . . 8 ((𝜑𝑗𝑍) → (𝑗 + (1 − 𝑀)) ∈ ℕ)
30 oveq1 6611 . . . . . . . . . . 11 (𝑥 = (𝑗 + (1 − 𝑀)) → (𝑥 − 1) = ((𝑗 + (1 − 𝑀)) − 1))
3130oveq2d 6620 . . . . . . . . . 10 (𝑥 = (𝑗 + (1 − 𝑀)) → (𝑀 + (𝑥 − 1)) = (𝑀 + ((𝑗 + (1 − 𝑀)) − 1)))
3231fveq2d 6152 . . . . . . . . 9 (𝑥 = (𝑗 + (1 − 𝑀)) → (𝐻‘(𝑀 + (𝑥 − 1))) = (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))))
33 eqid 2621 . . . . . . . . 9 (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))) = (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))
34 fvex 6158 . . . . . . . . 9 (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))) ∈ V
3532, 33, 34fvmpt 6239 . . . . . . . 8 ((𝑗 + (1 − 𝑀)) ∈ ℕ → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘(𝑗 + (1 − 𝑀))) = (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))))
3629, 35syl 17 . . . . . . 7 ((𝜑𝑗𝑍) → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘(𝑗 + (1 − 𝑀))) = (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))))
3724oveq1d 6619 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (((𝑗𝑀) + 1) − 1) = ((𝑗 + (1 − 𝑀)) − 1))
3826nn0cnd 11297 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → (𝑗𝑀) ∈ ℂ)
39 ax-1cn 9938 . . . . . . . . . . . 12 1 ∈ ℂ
40 pncan 10231 . . . . . . . . . . . 12 (((𝑗𝑀) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑗𝑀) + 1) − 1) = (𝑗𝑀))
4138, 39, 40sylancl 693 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (((𝑗𝑀) + 1) − 1) = (𝑗𝑀))
4237, 41eqtr3d 2657 . . . . . . . . . 10 ((𝜑𝑗𝑍) → ((𝑗 + (1 − 𝑀)) − 1) = (𝑗𝑀))
4342oveq2d 6620 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝑀 + ((𝑗 + (1 − 𝑀)) − 1)) = (𝑀 + (𝑗𝑀)))
4422, 20pncan3d 10339 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝑀 + (𝑗𝑀)) = 𝑗)
4543, 44eqtrd 2655 . . . . . . . 8 ((𝜑𝑗𝑍) → (𝑀 + ((𝑗 + (1 − 𝑀)) − 1)) = 𝑗)
4645fveq2d 6152 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))) = (𝐻𝑗))
4736, 46eqtr2d 2656 . . . . . 6 ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘(𝑗 + (1 − 𝑀))))
4813, 15, 47syl2an 494 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (𝑀...𝑘)) → (𝐻𝑗) = ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘(𝑗 + (1 − 𝑀))))
4911, 12, 48seqshft2 12767 . . . 4 ((𝜑𝑘𝑍) → (seq𝑀( + , 𝐻)‘𝑘) = (seq(𝑀 + (1 − 𝑀))( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))‘(𝑘 + (1 − 𝑀))))
5021adantr 481 . . . . . . 7 ((𝜑𝑘𝑍) → 𝑀 ∈ ℂ)
51 pncan3 10233 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 + (1 − 𝑀)) = 1)
5250, 39, 51sylancl 693 . . . . . 6 ((𝜑𝑘𝑍) → (𝑀 + (1 − 𝑀)) = 1)
5352seqeq1d 12747 . . . . 5 ((𝜑𝑘𝑍) → seq(𝑀 + (1 − 𝑀))( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) = seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))))
5453fveq1d 6150 . . . 4 ((𝜑𝑘𝑍) → (seq(𝑀 + (1 − 𝑀))( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))‘(𝑘 + (1 − 𝑀))) = (seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))‘(𝑘 + (1 − 𝑀))))
5549, 54eqtr2d 2656 . . 3 ((𝜑𝑘𝑍) → (seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))‘(𝑘 + (1 − 𝑀))) = (seq𝑀( + , 𝐻)‘𝑘))
561, 2, 5, 7, 9, 55climshft2 14247 . 2 (𝜑 → (seq𝑀( + , 𝐻) ⇝ 𝐴 ↔ seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) ⇝ 𝐴))
57 isercoll2.w . . 3 𝑊 = (ℤ𝑁)
58 isercoll2.n . . 3 (𝜑𝑁 ∈ ℤ)
59 isercoll2.g . . . . . 6 (𝜑𝐺:𝑍𝑊)
6059adantr 481 . . . . 5 ((𝜑𝑥 ∈ ℕ) → 𝐺:𝑍𝑊)
61 uzid 11646 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
622, 61syl 17 . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝑀))
63 nnm1nn0 11278 . . . . . . 7 (𝑥 ∈ ℕ → (𝑥 − 1) ∈ ℕ0)
64 uzaddcl 11688 . . . . . . 7 ((𝑀 ∈ (ℤ𝑀) ∧ (𝑥 − 1) ∈ ℕ0) → (𝑀 + (𝑥 − 1)) ∈ (ℤ𝑀))
6562, 63, 64syl2an 494 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (𝑀 + (𝑥 − 1)) ∈ (ℤ𝑀))
6665, 1syl6eleqr 2709 . . . . 5 ((𝜑𝑥 ∈ ℕ) → (𝑀 + (𝑥 − 1)) ∈ 𝑍)
6760, 66ffvelrnd 6316 . . . 4 ((𝜑𝑥 ∈ ℕ) → (𝐺‘(𝑀 + (𝑥 − 1))) ∈ 𝑊)
68 eqid 2621 . . . 4 (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) = (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))
6967, 68fmptd 6340 . . 3 (𝜑 → (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))):ℕ⟶𝑊)
70 nnm1nn0 11278 . . . . . . . 8 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
71 uzaddcl 11688 . . . . . . . 8 ((𝑀 ∈ (ℤ𝑀) ∧ (𝑗 − 1) ∈ ℕ0) → (𝑀 + (𝑗 − 1)) ∈ (ℤ𝑀))
7262, 70, 71syl2an 494 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝑀 + (𝑗 − 1)) ∈ (ℤ𝑀))
7372, 1syl6eleqr 2709 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝑀 + (𝑗 − 1)) ∈ 𝑍)
74 isercoll2.i . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
7574ralrimiva 2960 . . . . . . 7 (𝜑 → ∀𝑘𝑍 (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
7675adantr 481 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ∀𝑘𝑍 (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
77 fveq2 6148 . . . . . . . 8 (𝑘 = (𝑀 + (𝑗 − 1)) → (𝐺𝑘) = (𝐺‘(𝑀 + (𝑗 − 1))))
78 oveq1 6611 . . . . . . . . 9 (𝑘 = (𝑀 + (𝑗 − 1)) → (𝑘 + 1) = ((𝑀 + (𝑗 − 1)) + 1))
7978fveq2d 6152 . . . . . . . 8 (𝑘 = (𝑀 + (𝑗 − 1)) → (𝐺‘(𝑘 + 1)) = (𝐺‘((𝑀 + (𝑗 − 1)) + 1)))
8077, 79breq12d 4626 . . . . . . 7 (𝑘 = (𝑀 + (𝑗 − 1)) → ((𝐺𝑘) < (𝐺‘(𝑘 + 1)) ↔ (𝐺‘(𝑀 + (𝑗 − 1))) < (𝐺‘((𝑀 + (𝑗 − 1)) + 1))))
8180rspcv 3291 . . . . . 6 ((𝑀 + (𝑗 − 1)) ∈ 𝑍 → (∀𝑘𝑍 (𝐺𝑘) < (𝐺‘(𝑘 + 1)) → (𝐺‘(𝑀 + (𝑗 − 1))) < (𝐺‘((𝑀 + (𝑗 − 1)) + 1))))
8273, 76, 81sylc 65 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑀 + (𝑗 − 1))) < (𝐺‘((𝑀 + (𝑗 − 1)) + 1)))
83 nncn 10972 . . . . . . . . . 10 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
8483adantl 482 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
85 1cnd 10000 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 1 ∈ ℂ)
8684, 85, 85addsubd 10357 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝑗 + 1) − 1) = ((𝑗 − 1) + 1))
8786oveq2d 6620 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝑀 + ((𝑗 + 1) − 1)) = (𝑀 + ((𝑗 − 1) + 1)))
8821adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑀 ∈ ℂ)
8970adantl 482 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝑗 − 1) ∈ ℕ0)
9089nn0cnd 11297 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝑗 − 1) ∈ ℂ)
9188, 90, 85addassd 10006 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((𝑀 + (𝑗 − 1)) + 1) = (𝑀 + ((𝑗 − 1) + 1)))
9287, 91eqtr4d 2658 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝑀 + ((𝑗 + 1) − 1)) = ((𝑀 + (𝑗 − 1)) + 1))
9392fveq2d 6152 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑀 + ((𝑗 + 1) − 1))) = (𝐺‘((𝑀 + (𝑗 − 1)) + 1)))
9482, 93breqtrrd 4641 . . . 4 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑀 + (𝑗 − 1))) < (𝐺‘(𝑀 + ((𝑗 + 1) − 1))))
95 oveq1 6611 . . . . . . . 8 (𝑥 = 𝑗 → (𝑥 − 1) = (𝑗 − 1))
9695oveq2d 6620 . . . . . . 7 (𝑥 = 𝑗 → (𝑀 + (𝑥 − 1)) = (𝑀 + (𝑗 − 1)))
9796fveq2d 6152 . . . . . 6 (𝑥 = 𝑗 → (𝐺‘(𝑀 + (𝑥 − 1))) = (𝐺‘(𝑀 + (𝑗 − 1))))
98 fvex 6158 . . . . . 6 (𝐺‘(𝑀 + (𝑗 − 1))) ∈ V
9997, 68, 98fvmpt 6239 . . . . 5 (𝑗 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐺‘(𝑀 + (𝑗 − 1))))
10099adantl 482 . . . 4 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐺‘(𝑀 + (𝑗 − 1))))
101 peano2nn 10976 . . . . . 6 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
102101adantl 482 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ)
103 oveq1 6611 . . . . . . . 8 (𝑥 = (𝑗 + 1) → (𝑥 − 1) = ((𝑗 + 1) − 1))
104103oveq2d 6620 . . . . . . 7 (𝑥 = (𝑗 + 1) → (𝑀 + (𝑥 − 1)) = (𝑀 + ((𝑗 + 1) − 1)))
105104fveq2d 6152 . . . . . 6 (𝑥 = (𝑗 + 1) → (𝐺‘(𝑀 + (𝑥 − 1))) = (𝐺‘(𝑀 + ((𝑗 + 1) − 1))))
106 fvex 6158 . . . . . 6 (𝐺‘(𝑀 + ((𝑗 + 1) − 1))) ∈ V
107105, 68, 106fvmpt 6239 . . . . 5 ((𝑗 + 1) ∈ ℕ → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘(𝑗 + 1)) = (𝐺‘(𝑀 + ((𝑗 + 1) − 1))))
108102, 107syl 17 . . . 4 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘(𝑗 + 1)) = (𝐺‘(𝑀 + ((𝑗 + 1) − 1))))
10994, 100, 1083brtr4d 4645 . . 3 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗) < ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘(𝑗 + 1)))
110 ffn 6002 . . . . . . . . 9 (𝐺:𝑍𝑊𝐺 Fn 𝑍)
11159, 110syl 17 . . . . . . . 8 (𝜑𝐺 Fn 𝑍)
112 uznn0sub 11663 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ𝑀) → (𝑘𝑀) ∈ ℕ0)
11311, 112syl 17 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝑘𝑀) ∈ ℕ0)
114 nn0p1nn 11276 . . . . . . . . . . . 12 ((𝑘𝑀) ∈ ℕ0 → ((𝑘𝑀) + 1) ∈ ℕ)
115113, 114syl 17 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → ((𝑘𝑀) + 1) ∈ ℕ)
116113nn0cnd 11297 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝑘𝑀) ∈ ℂ)
117 pncan 10231 . . . . . . . . . . . . . . 15 (((𝑘𝑀) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑘𝑀) + 1) − 1) = (𝑘𝑀))
118116, 39, 117sylancl 693 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → (((𝑘𝑀) + 1) − 1) = (𝑘𝑀))
119118oveq2d 6620 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝑀 + (((𝑘𝑀) + 1) − 1)) = (𝑀 + (𝑘𝑀)))
120 eluzelz 11641 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
121120, 1eleq2s 2716 . . . . . . . . . . . . . . 15 (𝑘𝑍𝑘 ∈ ℤ)
122121zcnd 11427 . . . . . . . . . . . . . 14 (𝑘𝑍𝑘 ∈ ℂ)
123 pncan3 10233 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑀 + (𝑘𝑀)) = 𝑘)
12421, 122, 123syl2an 494 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝑀 + (𝑘𝑀)) = 𝑘)
125119, 124eqtr2d 2656 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝑘 = (𝑀 + (((𝑘𝑀) + 1) − 1)))
126125fveq2d 6152 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐺‘(𝑀 + (((𝑘𝑀) + 1) − 1))))
127 oveq1 6611 . . . . . . . . . . . . . . 15 (𝑥 = ((𝑘𝑀) + 1) → (𝑥 − 1) = (((𝑘𝑀) + 1) − 1))
128127oveq2d 6620 . . . . . . . . . . . . . 14 (𝑥 = ((𝑘𝑀) + 1) → (𝑀 + (𝑥 − 1)) = (𝑀 + (((𝑘𝑀) + 1) − 1)))
129128fveq2d 6152 . . . . . . . . . . . . 13 (𝑥 = ((𝑘𝑀) + 1) → (𝐺‘(𝑀 + (𝑥 − 1))) = (𝐺‘(𝑀 + (((𝑘𝑀) + 1) − 1))))
130129eqeq2d 2631 . . . . . . . . . . . 12 (𝑥 = ((𝑘𝑀) + 1) → ((𝐺𝑘) = (𝐺‘(𝑀 + (𝑥 − 1))) ↔ (𝐺𝑘) = (𝐺‘(𝑀 + (((𝑘𝑀) + 1) − 1)))))
131130rspcev 3295 . . . . . . . . . . 11 ((((𝑘𝑀) + 1) ∈ ℕ ∧ (𝐺𝑘) = (𝐺‘(𝑀 + (((𝑘𝑀) + 1) − 1)))) → ∃𝑥 ∈ ℕ (𝐺𝑘) = (𝐺‘(𝑀 + (𝑥 − 1))))
132115, 126, 131syl2anc 692 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ∃𝑥 ∈ ℕ (𝐺𝑘) = (𝐺‘(𝑀 + (𝑥 − 1))))
133 fvex 6158 . . . . . . . . . . 11 (𝐺𝑘) ∈ V
13468elrnmpt 5332 . . . . . . . . . . 11 ((𝐺𝑘) ∈ V → ((𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) ↔ ∃𝑥 ∈ ℕ (𝐺𝑘) = (𝐺‘(𝑀 + (𝑥 − 1)))))
135133, 134ax-mp 5 . . . . . . . . . 10 ((𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) ↔ ∃𝑥 ∈ ℕ (𝐺𝑘) = (𝐺‘(𝑀 + (𝑥 − 1))))
136132, 135sylibr 224 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))
137136ralrimiva 2960 . . . . . . . 8 (𝜑 → ∀𝑘𝑍 (𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))
138 ffnfv 6343 . . . . . . . 8 (𝐺:𝑍⟶ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) ↔ (𝐺 Fn 𝑍 ∧ ∀𝑘𝑍 (𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))))
139111, 137, 138sylanbrc 697 . . . . . . 7 (𝜑𝐺:𝑍⟶ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))
140 frn 6010 . . . . . . 7 (𝐺:𝑍⟶ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) → ran 𝐺 ⊆ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))
141139, 140syl 17 . . . . . 6 (𝜑 → ran 𝐺 ⊆ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))
142141sscond 3725 . . . . 5 (𝜑 → (𝑊 ∖ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))) ⊆ (𝑊 ∖ ran 𝐺))
143142sselda 3583 . . . 4 ((𝜑𝑛 ∈ (𝑊 ∖ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))) → 𝑛 ∈ (𝑊 ∖ ran 𝐺))
144 isercoll2.0 . . . 4 ((𝜑𝑛 ∈ (𝑊 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
145143, 144syldan 487 . . 3 ((𝜑𝑛 ∈ (𝑊 ∖ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))) → (𝐹𝑛) = 0)
146 isercoll2.f . . 3 ((𝜑𝑛𝑊) → (𝐹𝑛) ∈ ℂ)
147 isercoll2.h . . . . . . 7 ((𝜑𝑘𝑍) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
148147ralrimiva 2960 . . . . . 6 (𝜑 → ∀𝑘𝑍 (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
149148adantr 481 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ∀𝑘𝑍 (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
150 fveq2 6148 . . . . . . 7 (𝑘 = (𝑀 + (𝑗 − 1)) → (𝐻𝑘) = (𝐻‘(𝑀 + (𝑗 − 1))))
15177fveq2d 6152 . . . . . . 7 (𝑘 = (𝑀 + (𝑗 − 1)) → (𝐹‘(𝐺𝑘)) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1)))))
152150, 151eqeq12d 2636 . . . . . 6 (𝑘 = (𝑀 + (𝑗 − 1)) → ((𝐻𝑘) = (𝐹‘(𝐺𝑘)) ↔ (𝐻‘(𝑀 + (𝑗 − 1))) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1))))))
153152rspcv 3291 . . . . 5 ((𝑀 + (𝑗 − 1)) ∈ 𝑍 → (∀𝑘𝑍 (𝐻𝑘) = (𝐹‘(𝐺𝑘)) → (𝐻‘(𝑀 + (𝑗 − 1))) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1))))))
15473, 149, 153sylc 65 . . . 4 ((𝜑𝑗 ∈ ℕ) → (𝐻‘(𝑀 + (𝑗 − 1))) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1)))))
15596fveq2d 6152 . . . . . 6 (𝑥 = 𝑗 → (𝐻‘(𝑀 + (𝑥 − 1))) = (𝐻‘(𝑀 + (𝑗 − 1))))
156 fvex 6158 . . . . . 6 (𝐻‘(𝑀 + (𝑗 − 1))) ∈ V
157155, 33, 156fvmpt 6239 . . . . 5 (𝑗 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐻‘(𝑀 + (𝑗 − 1))))
158157adantl 482 . . . 4 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐻‘(𝑀 + (𝑗 − 1))))
159100fveq2d 6152 . . . 4 ((𝜑𝑗 ∈ ℕ) → (𝐹‘((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗)) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1)))))
160154, 158, 1593eqtr4d 2665 . . 3 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐹‘((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗)))
16157, 58, 69, 109, 145, 146, 160isercoll 14332 . 2 (𝜑 → (seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) ⇝ 𝐴 ↔ seq𝑁( + , 𝐹) ⇝ 𝐴))
16256, 161bitrd 268 1 (𝜑 → (seq𝑀( + , 𝐻) ⇝ 𝐴 ↔ seq𝑁( + , 𝐹) ⇝ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  Vcvv 3186  cdif 3552  wss 3555   class class class wbr 4613  cmpt 4673  ran crn 5075   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  0cc0 9880  1c1 9881   + caddc 9883   < clt 10018  cmin 10210  cn 10964  0cn0 11236  cz 11321  cuz 11631  ...cfz 12268  seqcseq 12741  cli 14149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-fz 12269  df-seq 12742  df-hash 13058  df-shft 13741  df-clim 14153
This theorem is referenced by:  iserodd  15464  stirlinglem5  39599
  Copyright terms: Public domain W3C validator