Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercoll2 Structured version   Visualization version   GIF version

Theorem isercoll2 14598
 Description: Generalize isercoll 14597 so that both sequences have arbitrary starting point. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll2.z 𝑍 = (ℤ𝑀)
isercoll2.w 𝑊 = (ℤ𝑁)
isercoll2.m (𝜑𝑀 ∈ ℤ)
isercoll2.n (𝜑𝑁 ∈ ℤ)
isercoll2.g (𝜑𝐺:𝑍𝑊)
isercoll2.i ((𝜑𝑘𝑍) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
isercoll2.0 ((𝜑𝑛 ∈ (𝑊 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
isercoll2.f ((𝜑𝑛𝑊) → (𝐹𝑛) ∈ ℂ)
isercoll2.h ((𝜑𝑘𝑍) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
Assertion
Ref Expression
isercoll2 (𝜑 → (seq𝑀( + , 𝐻) ⇝ 𝐴 ↔ seq𝑁( + , 𝐹) ⇝ 𝐴))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹,𝑛   𝑘,𝐺,𝑛   𝑘,𝐻,𝑛   𝑛,𝑁   𝑘,𝑀,𝑛   𝜑,𝑘,𝑛   𝑛,𝑊   𝑘,𝑍
Allowed substitution hints:   𝑁(𝑘)   𝑊(𝑘)   𝑍(𝑛)

Proof of Theorem isercoll2
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isercoll2.z . . 3 𝑍 = (ℤ𝑀)
2 isercoll2.m . . 3 (𝜑𝑀 ∈ ℤ)
3 1z 11599 . . . 4 1 ∈ ℤ
4 zsubcl 11611 . . . 4 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 − 𝑀) ∈ ℤ)
53, 2, 4sylancr 698 . . 3 (𝜑 → (1 − 𝑀) ∈ ℤ)
6 seqex 12997 . . . 4 seq𝑀( + , 𝐻) ∈ V
76a1i 11 . . 3 (𝜑 → seq𝑀( + , 𝐻) ∈ V)
8 seqex 12997 . . . 4 seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) ∈ V
98a1i 11 . . 3 (𝜑 → seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) ∈ V)
10 simpr 479 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘𝑍)
1110, 1syl6eleq 2849 . . . . 5 ((𝜑𝑘𝑍) → 𝑘 ∈ (ℤ𝑀))
125adantr 472 . . . . 5 ((𝜑𝑘𝑍) → (1 − 𝑀) ∈ ℤ)
13 simpl 474 . . . . . 6 ((𝜑𝑘𝑍) → 𝜑)
14 elfzuz 12531 . . . . . . 7 (𝑗 ∈ (𝑀...𝑘) → 𝑗 ∈ (ℤ𝑀))
1514, 1syl6eleqr 2850 . . . . . 6 (𝑗 ∈ (𝑀...𝑘) → 𝑗𝑍)
16 simpr 479 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → 𝑗𝑍)
1716, 1syl6eleq 2849 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
18 eluzelz 11889 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
1917, 18syl 17 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → 𝑗 ∈ ℤ)
2019zcnd 11675 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗 ∈ ℂ)
212zcnd 11675 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
2221adantr 472 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑀 ∈ ℂ)
23 1cnd 10248 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 1 ∈ ℂ)
2420, 22, 23subadd23d 10606 . . . . . . . . 9 ((𝜑𝑗𝑍) → ((𝑗𝑀) + 1) = (𝑗 + (1 − 𝑀)))
25 uznn0sub 11912 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → (𝑗𝑀) ∈ ℕ0)
2617, 25syl 17 . . . . . . . . . 10 ((𝜑𝑗𝑍) → (𝑗𝑀) ∈ ℕ0)
27 nn0p1nn 11524 . . . . . . . . . 10 ((𝑗𝑀) ∈ ℕ0 → ((𝑗𝑀) + 1) ∈ ℕ)
2826, 27syl 17 . . . . . . . . 9 ((𝜑𝑗𝑍) → ((𝑗𝑀) + 1) ∈ ℕ)
2924, 28eqeltrrd 2840 . . . . . . . 8 ((𝜑𝑗𝑍) → (𝑗 + (1 − 𝑀)) ∈ ℕ)
30 oveq1 6820 . . . . . . . . . . 11 (𝑥 = (𝑗 + (1 − 𝑀)) → (𝑥 − 1) = ((𝑗 + (1 − 𝑀)) − 1))
3130oveq2d 6829 . . . . . . . . . 10 (𝑥 = (𝑗 + (1 − 𝑀)) → (𝑀 + (𝑥 − 1)) = (𝑀 + ((𝑗 + (1 − 𝑀)) − 1)))
3231fveq2d 6356 . . . . . . . . 9 (𝑥 = (𝑗 + (1 − 𝑀)) → (𝐻‘(𝑀 + (𝑥 − 1))) = (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))))
33 eqid 2760 . . . . . . . . 9 (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))) = (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))
34 fvex 6362 . . . . . . . . 9 (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))) ∈ V
3532, 33, 34fvmpt 6444 . . . . . . . 8 ((𝑗 + (1 − 𝑀)) ∈ ℕ → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘(𝑗 + (1 − 𝑀))) = (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))))
3629, 35syl 17 . . . . . . 7 ((𝜑𝑗𝑍) → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘(𝑗 + (1 − 𝑀))) = (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))))
3724oveq1d 6828 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (((𝑗𝑀) + 1) − 1) = ((𝑗 + (1 − 𝑀)) − 1))
3826nn0cnd 11545 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → (𝑗𝑀) ∈ ℂ)
39 ax-1cn 10186 . . . . . . . . . . . 12 1 ∈ ℂ
40 pncan 10479 . . . . . . . . . . . 12 (((𝑗𝑀) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑗𝑀) + 1) − 1) = (𝑗𝑀))
4138, 39, 40sylancl 697 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (((𝑗𝑀) + 1) − 1) = (𝑗𝑀))
4237, 41eqtr3d 2796 . . . . . . . . . 10 ((𝜑𝑗𝑍) → ((𝑗 + (1 − 𝑀)) − 1) = (𝑗𝑀))
4342oveq2d 6829 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝑀 + ((𝑗 + (1 − 𝑀)) − 1)) = (𝑀 + (𝑗𝑀)))
4422, 20pncan3d 10587 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝑀 + (𝑗𝑀)) = 𝑗)
4543, 44eqtrd 2794 . . . . . . . 8 ((𝜑𝑗𝑍) → (𝑀 + ((𝑗 + (1 − 𝑀)) − 1)) = 𝑗)
4645fveq2d 6356 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))) = (𝐻𝑗))
4736, 46eqtr2d 2795 . . . . . 6 ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘(𝑗 + (1 − 𝑀))))
4813, 15, 47syl2an 495 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (𝑀...𝑘)) → (𝐻𝑗) = ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘(𝑗 + (1 − 𝑀))))
4911, 12, 48seqshft2 13021 . . . 4 ((𝜑𝑘𝑍) → (seq𝑀( + , 𝐻)‘𝑘) = (seq(𝑀 + (1 − 𝑀))( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))‘(𝑘 + (1 − 𝑀))))
5021adantr 472 . . . . . . 7 ((𝜑𝑘𝑍) → 𝑀 ∈ ℂ)
51 pncan3 10481 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 + (1 − 𝑀)) = 1)
5250, 39, 51sylancl 697 . . . . . 6 ((𝜑𝑘𝑍) → (𝑀 + (1 − 𝑀)) = 1)
5352seqeq1d 13001 . . . . 5 ((𝜑𝑘𝑍) → seq(𝑀 + (1 − 𝑀))( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) = seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))))
5453fveq1d 6354 . . . 4 ((𝜑𝑘𝑍) → (seq(𝑀 + (1 − 𝑀))( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))‘(𝑘 + (1 − 𝑀))) = (seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))‘(𝑘 + (1 − 𝑀))))
5549, 54eqtr2d 2795 . . 3 ((𝜑𝑘𝑍) → (seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))‘(𝑘 + (1 − 𝑀))) = (seq𝑀( + , 𝐻)‘𝑘))
561, 2, 5, 7, 9, 55climshft2 14512 . 2 (𝜑 → (seq𝑀( + , 𝐻) ⇝ 𝐴 ↔ seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) ⇝ 𝐴))
57 isercoll2.w . . 3 𝑊 = (ℤ𝑁)
58 isercoll2.n . . 3 (𝜑𝑁 ∈ ℤ)
59 isercoll2.g . . . . . 6 (𝜑𝐺:𝑍𝑊)
6059adantr 472 . . . . 5 ((𝜑𝑥 ∈ ℕ) → 𝐺:𝑍𝑊)
61 uzid 11894 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
622, 61syl 17 . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝑀))
63 nnm1nn0 11526 . . . . . . 7 (𝑥 ∈ ℕ → (𝑥 − 1) ∈ ℕ0)
64 uzaddcl 11937 . . . . . . 7 ((𝑀 ∈ (ℤ𝑀) ∧ (𝑥 − 1) ∈ ℕ0) → (𝑀 + (𝑥 − 1)) ∈ (ℤ𝑀))
6562, 63, 64syl2an 495 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (𝑀 + (𝑥 − 1)) ∈ (ℤ𝑀))
6665, 1syl6eleqr 2850 . . . . 5 ((𝜑𝑥 ∈ ℕ) → (𝑀 + (𝑥 − 1)) ∈ 𝑍)
6760, 66ffvelrnd 6523 . . . 4 ((𝜑𝑥 ∈ ℕ) → (𝐺‘(𝑀 + (𝑥 − 1))) ∈ 𝑊)
68 eqid 2760 . . . 4 (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) = (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))
6967, 68fmptd 6548 . . 3 (𝜑 → (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))):ℕ⟶𝑊)
70 fveq2 6352 . . . . . . 7 (𝑘 = (𝑀 + (𝑗 − 1)) → (𝐺𝑘) = (𝐺‘(𝑀 + (𝑗 − 1))))
71 oveq1 6820 . . . . . . . 8 (𝑘 = (𝑀 + (𝑗 − 1)) → (𝑘 + 1) = ((𝑀 + (𝑗 − 1)) + 1))
7271fveq2d 6356 . . . . . . 7 (𝑘 = (𝑀 + (𝑗 − 1)) → (𝐺‘(𝑘 + 1)) = (𝐺‘((𝑀 + (𝑗 − 1)) + 1)))
7370, 72breq12d 4817 . . . . . 6 (𝑘 = (𝑀 + (𝑗 − 1)) → ((𝐺𝑘) < (𝐺‘(𝑘 + 1)) ↔ (𝐺‘(𝑀 + (𝑗 − 1))) < (𝐺‘((𝑀 + (𝑗 − 1)) + 1))))
74 isercoll2.i . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
7574ralrimiva 3104 . . . . . . 7 (𝜑 → ∀𝑘𝑍 (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
7675adantr 472 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ∀𝑘𝑍 (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
77 nnm1nn0 11526 . . . . . . . 8 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
78 uzaddcl 11937 . . . . . . . 8 ((𝑀 ∈ (ℤ𝑀) ∧ (𝑗 − 1) ∈ ℕ0) → (𝑀 + (𝑗 − 1)) ∈ (ℤ𝑀))
7962, 77, 78syl2an 495 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝑀 + (𝑗 − 1)) ∈ (ℤ𝑀))
8079, 1syl6eleqr 2850 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝑀 + (𝑗 − 1)) ∈ 𝑍)
8173, 76, 80rspcdva 3455 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑀 + (𝑗 − 1))) < (𝐺‘((𝑀 + (𝑗 − 1)) + 1)))
82 nncn 11220 . . . . . . . . . 10 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
8382adantl 473 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
84 1cnd 10248 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 1 ∈ ℂ)
8583, 84, 84addsubd 10605 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝑗 + 1) − 1) = ((𝑗 − 1) + 1))
8685oveq2d 6829 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝑀 + ((𝑗 + 1) − 1)) = (𝑀 + ((𝑗 − 1) + 1)))
8721adantr 472 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑀 ∈ ℂ)
8877adantl 473 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝑗 − 1) ∈ ℕ0)
8988nn0cnd 11545 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝑗 − 1) ∈ ℂ)
9087, 89, 84addassd 10254 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((𝑀 + (𝑗 − 1)) + 1) = (𝑀 + ((𝑗 − 1) + 1)))
9186, 90eqtr4d 2797 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝑀 + ((𝑗 + 1) − 1)) = ((𝑀 + (𝑗 − 1)) + 1))
9291fveq2d 6356 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑀 + ((𝑗 + 1) − 1))) = (𝐺‘((𝑀 + (𝑗 − 1)) + 1)))
9381, 92breqtrrd 4832 . . . 4 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑀 + (𝑗 − 1))) < (𝐺‘(𝑀 + ((𝑗 + 1) − 1))))
94 oveq1 6820 . . . . . . . 8 (𝑥 = 𝑗 → (𝑥 − 1) = (𝑗 − 1))
9594oveq2d 6829 . . . . . . 7 (𝑥 = 𝑗 → (𝑀 + (𝑥 − 1)) = (𝑀 + (𝑗 − 1)))
9695fveq2d 6356 . . . . . 6 (𝑥 = 𝑗 → (𝐺‘(𝑀 + (𝑥 − 1))) = (𝐺‘(𝑀 + (𝑗 − 1))))
97 fvex 6362 . . . . . 6 (𝐺‘(𝑀 + (𝑗 − 1))) ∈ V
9896, 68, 97fvmpt 6444 . . . . 5 (𝑗 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐺‘(𝑀 + (𝑗 − 1))))
9998adantl 473 . . . 4 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐺‘(𝑀 + (𝑗 − 1))))
100 peano2nn 11224 . . . . . 6 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
101100adantl 473 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ)
102 oveq1 6820 . . . . . . . 8 (𝑥 = (𝑗 + 1) → (𝑥 − 1) = ((𝑗 + 1) − 1))
103102oveq2d 6829 . . . . . . 7 (𝑥 = (𝑗 + 1) → (𝑀 + (𝑥 − 1)) = (𝑀 + ((𝑗 + 1) − 1)))
104103fveq2d 6356 . . . . . 6 (𝑥 = (𝑗 + 1) → (𝐺‘(𝑀 + (𝑥 − 1))) = (𝐺‘(𝑀 + ((𝑗 + 1) − 1))))
105 fvex 6362 . . . . . 6 (𝐺‘(𝑀 + ((𝑗 + 1) − 1))) ∈ V
106104, 68, 105fvmpt 6444 . . . . 5 ((𝑗 + 1) ∈ ℕ → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘(𝑗 + 1)) = (𝐺‘(𝑀 + ((𝑗 + 1) − 1))))
107101, 106syl 17 . . . 4 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘(𝑗 + 1)) = (𝐺‘(𝑀 + ((𝑗 + 1) − 1))))
10893, 99, 1073brtr4d 4836 . . 3 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗) < ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘(𝑗 + 1)))
109 ffn 6206 . . . . . . . . 9 (𝐺:𝑍𝑊𝐺 Fn 𝑍)
11059, 109syl 17 . . . . . . . 8 (𝜑𝐺 Fn 𝑍)
111 uznn0sub 11912 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ𝑀) → (𝑘𝑀) ∈ ℕ0)
11211, 111syl 17 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝑘𝑀) ∈ ℕ0)
113 nn0p1nn 11524 . . . . . . . . . . . 12 ((𝑘𝑀) ∈ ℕ0 → ((𝑘𝑀) + 1) ∈ ℕ)
114112, 113syl 17 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → ((𝑘𝑀) + 1) ∈ ℕ)
115112nn0cnd 11545 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝑘𝑀) ∈ ℂ)
116 pncan 10479 . . . . . . . . . . . . . . 15 (((𝑘𝑀) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑘𝑀) + 1) − 1) = (𝑘𝑀))
117115, 39, 116sylancl 697 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → (((𝑘𝑀) + 1) − 1) = (𝑘𝑀))
118117oveq2d 6829 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝑀 + (((𝑘𝑀) + 1) − 1)) = (𝑀 + (𝑘𝑀)))
119 eluzelz 11889 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
120119, 1eleq2s 2857 . . . . . . . . . . . . . . 15 (𝑘𝑍𝑘 ∈ ℤ)
121120zcnd 11675 . . . . . . . . . . . . . 14 (𝑘𝑍𝑘 ∈ ℂ)
122 pncan3 10481 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑀 + (𝑘𝑀)) = 𝑘)
12321, 121, 122syl2an 495 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝑀 + (𝑘𝑀)) = 𝑘)
124118, 123eqtr2d 2795 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝑘 = (𝑀 + (((𝑘𝑀) + 1) − 1)))
125124fveq2d 6356 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐺‘(𝑀 + (((𝑘𝑀) + 1) − 1))))
126 oveq1 6820 . . . . . . . . . . . . . . 15 (𝑥 = ((𝑘𝑀) + 1) → (𝑥 − 1) = (((𝑘𝑀) + 1) − 1))
127126oveq2d 6829 . . . . . . . . . . . . . 14 (𝑥 = ((𝑘𝑀) + 1) → (𝑀 + (𝑥 − 1)) = (𝑀 + (((𝑘𝑀) + 1) − 1)))
128127fveq2d 6356 . . . . . . . . . . . . 13 (𝑥 = ((𝑘𝑀) + 1) → (𝐺‘(𝑀 + (𝑥 − 1))) = (𝐺‘(𝑀 + (((𝑘𝑀) + 1) − 1))))
129128eqeq2d 2770 . . . . . . . . . . . 12 (𝑥 = ((𝑘𝑀) + 1) → ((𝐺𝑘) = (𝐺‘(𝑀 + (𝑥 − 1))) ↔ (𝐺𝑘) = (𝐺‘(𝑀 + (((𝑘𝑀) + 1) − 1)))))
130129rspcev 3449 . . . . . . . . . . 11 ((((𝑘𝑀) + 1) ∈ ℕ ∧ (𝐺𝑘) = (𝐺‘(𝑀 + (((𝑘𝑀) + 1) − 1)))) → ∃𝑥 ∈ ℕ (𝐺𝑘) = (𝐺‘(𝑀 + (𝑥 − 1))))
131114, 125, 130syl2anc 696 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ∃𝑥 ∈ ℕ (𝐺𝑘) = (𝐺‘(𝑀 + (𝑥 − 1))))
132 fvex 6362 . . . . . . . . . . 11 (𝐺𝑘) ∈ V
13368elrnmpt 5527 . . . . . . . . . . 11 ((𝐺𝑘) ∈ V → ((𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) ↔ ∃𝑥 ∈ ℕ (𝐺𝑘) = (𝐺‘(𝑀 + (𝑥 − 1)))))
134132, 133ax-mp 5 . . . . . . . . . 10 ((𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) ↔ ∃𝑥 ∈ ℕ (𝐺𝑘) = (𝐺‘(𝑀 + (𝑥 − 1))))
135131, 134sylibr 224 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))
136135ralrimiva 3104 . . . . . . . 8 (𝜑 → ∀𝑘𝑍 (𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))
137 ffnfv 6551 . . . . . . . 8 (𝐺:𝑍⟶ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) ↔ (𝐺 Fn 𝑍 ∧ ∀𝑘𝑍 (𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))))
138110, 136, 137sylanbrc 701 . . . . . . 7 (𝜑𝐺:𝑍⟶ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))
139 frn 6214 . . . . . . 7 (𝐺:𝑍⟶ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) → ran 𝐺 ⊆ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))
140138, 139syl 17 . . . . . 6 (𝜑 → ran 𝐺 ⊆ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))
141140sscond 3890 . . . . 5 (𝜑 → (𝑊 ∖ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))) ⊆ (𝑊 ∖ ran 𝐺))
142141sselda 3744 . . . 4 ((𝜑𝑛 ∈ (𝑊 ∖ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))) → 𝑛 ∈ (𝑊 ∖ ran 𝐺))
143 isercoll2.0 . . . 4 ((𝜑𝑛 ∈ (𝑊 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
144142, 143syldan 488 . . 3 ((𝜑𝑛 ∈ (𝑊 ∖ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))) → (𝐹𝑛) = 0)
145 isercoll2.f . . 3 ((𝜑𝑛𝑊) → (𝐹𝑛) ∈ ℂ)
146 fveq2 6352 . . . . . 6 (𝑘 = (𝑀 + (𝑗 − 1)) → (𝐻𝑘) = (𝐻‘(𝑀 + (𝑗 − 1))))
14770fveq2d 6356 . . . . . 6 (𝑘 = (𝑀 + (𝑗 − 1)) → (𝐹‘(𝐺𝑘)) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1)))))
148146, 147eqeq12d 2775 . . . . 5 (𝑘 = (𝑀 + (𝑗 − 1)) → ((𝐻𝑘) = (𝐹‘(𝐺𝑘)) ↔ (𝐻‘(𝑀 + (𝑗 − 1))) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1))))))
149 isercoll2.h . . . . . . 7 ((𝜑𝑘𝑍) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
150149ralrimiva 3104 . . . . . 6 (𝜑 → ∀𝑘𝑍 (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
151150adantr 472 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ∀𝑘𝑍 (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
152148, 151, 80rspcdva 3455 . . . 4 ((𝜑𝑗 ∈ ℕ) → (𝐻‘(𝑀 + (𝑗 − 1))) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1)))))
15395fveq2d 6356 . . . . . 6 (𝑥 = 𝑗 → (𝐻‘(𝑀 + (𝑥 − 1))) = (𝐻‘(𝑀 + (𝑗 − 1))))
154 fvex 6362 . . . . . 6 (𝐻‘(𝑀 + (𝑗 − 1))) ∈ V
155153, 33, 154fvmpt 6444 . . . . 5 (𝑗 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐻‘(𝑀 + (𝑗 − 1))))
156155adantl 473 . . . 4 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐻‘(𝑀 + (𝑗 − 1))))
15799fveq2d 6356 . . . 4 ((𝜑𝑗 ∈ ℕ) → (𝐹‘((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗)) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1)))))
158152, 156, 1573eqtr4d 2804 . . 3 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐹‘((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗)))
15957, 58, 69, 108, 144, 145, 158isercoll 14597 . 2 (𝜑 → (seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) ⇝ 𝐴 ↔ seq𝑁( + , 𝐹) ⇝ 𝐴))
16056, 159bitrd 268 1 (𝜑 → (seq𝑀( + , 𝐻) ⇝ 𝐴 ↔ seq𝑁( + , 𝐹) ⇝ 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∀wral 3050  ∃wrex 3051  Vcvv 3340   ∖ cdif 3712   ⊆ wss 3715   class class class wbr 4804   ↦ cmpt 4881  ran crn 5267   Fn wfn 6044  ⟶wf 6045  ‘cfv 6049  (class class class)co 6813  ℂcc 10126  0cc0 10128  1c1 10129   + caddc 10131   < clt 10266   − cmin 10458  ℕcn 11212  ℕ0cn0 11484  ℤcz 11569  ℤ≥cuz 11879  ...cfz 12519  seqcseq 12995   ⇝ cli 14414 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-xnn0 11556  df-z 11570  df-uz 11880  df-fz 12520  df-seq 12996  df-hash 13312  df-shft 14006  df-clim 14418 This theorem is referenced by:  iserodd  15742  stirlinglem5  40798
 Copyright terms: Public domain W3C validator