MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercolllem2 Structured version   Visualization version   GIF version

Theorem isercolllem2 14338
Description: Lemma for isercoll 14340. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z 𝑍 = (ℤ𝑀)
isercoll.m (𝜑𝑀 ∈ ℤ)
isercoll.g (𝜑𝐺:ℕ⟶𝑍)
isercoll.i ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
Assertion
Ref Expression
isercolllem2 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1...(#‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))) = (𝐺 “ (𝑀...𝑁)))
Distinct variable groups:   𝑘,𝑁   𝜑,𝑘   𝑘,𝐺   𝑘,𝑀
Allowed substitution hint:   𝑍(𝑘)

Proof of Theorem isercolllem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfznn 12320 . . . . . . . 8 (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) → 𝑥 ∈ ℕ)
21a1i 11 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) → 𝑥 ∈ ℕ))
3 cnvimass 5449 . . . . . . . . 9 (𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺
4 isercoll.g . . . . . . . . . . 11 (𝜑𝐺:ℕ⟶𝑍)
54adantr 481 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝐺:ℕ⟶𝑍)
6 fdm 6013 . . . . . . . . . 10 (𝐺:ℕ⟶𝑍 → dom 𝐺 = ℕ)
75, 6syl 17 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → dom 𝐺 = ℕ)
83, 7syl5sseq 3637 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ⊆ ℕ)
98sseld 3586 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) → 𝑥 ∈ ℕ))
10 id 22 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ)
11 nnuz 11675 . . . . . . . . . . 11 ℕ = (ℤ‘1)
1210, 11syl6eleq 2708 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ∈ (ℤ‘1))
13 ltso 10070 . . . . . . . . . . . . . 14 < Or ℝ
1413a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → < Or ℝ)
15 fzfid 12720 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑀...𝑁) ∈ Fin)
16 ffun 6010 . . . . . . . . . . . . . . . . 17 (𝐺:ℕ⟶𝑍 → Fun 𝐺)
17 funimacnv 5933 . . . . . . . . . . . . . . . . 17 (Fun 𝐺 → (𝐺 “ (𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺))
185, 16, 173syl 18 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺))
19 inss1 3816 . . . . . . . . . . . . . . . 16 ((𝑀...𝑁) ∩ ran 𝐺) ⊆ (𝑀...𝑁)
2018, 19syl6eqss 3639 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ⊆ (𝑀...𝑁))
21 ssfi 8132 . . . . . . . . . . . . . . 15 (((𝑀...𝑁) ∈ Fin ∧ (𝐺 “ (𝐺 “ (𝑀...𝑁))) ⊆ (𝑀...𝑁)) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ∈ Fin)
2215, 20, 21syl2anc 692 . . . . . . . . . . . . . 14 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ∈ Fin)
23 ssid 3608 . . . . . . . . . . . . . . . . . . . . 21 ℕ ⊆ ℕ
24 isercoll.z . . . . . . . . . . . . . . . . . . . . . 22 𝑍 = (ℤ𝑀)
25 isercoll.m . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑀 ∈ ℤ)
26 isercoll.i . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
2724, 25, 4, 26isercolllem1 14337 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ℕ ⊆ ℕ) → (𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)))
2823, 27mpan2 706 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)))
29 ffn 6007 . . . . . . . . . . . . . . . . . . . . 21 (𝐺:ℕ⟶𝑍𝐺 Fn ℕ)
30 fnresdm 5963 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 Fn ℕ → (𝐺 ↾ ℕ) = 𝐺)
31 isoeq1 6527 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ↾ ℕ) = 𝐺 → ((𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)) ↔ 𝐺 Isom < , < (ℕ, (𝐺 “ ℕ))))
324, 29, 30, 314syl 19 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)) ↔ 𝐺 Isom < , < (ℕ, (𝐺 “ ℕ))))
3328, 32mpbid 222 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)))
34 isof1o 6533 . . . . . . . . . . . . . . . . . . 19 (𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)) → 𝐺:ℕ–1-1-onto→(𝐺 “ ℕ))
35 f1ocnv 6111 . . . . . . . . . . . . . . . . . . 19 (𝐺:ℕ–1-1-onto→(𝐺 “ ℕ) → 𝐺:(𝐺 “ ℕ)–1-1-onto→ℕ)
36 f1ofun 6101 . . . . . . . . . . . . . . . . . . 19 (𝐺:(𝐺 “ ℕ)–1-1-onto→ℕ → Fun 𝐺)
3733, 34, 35, 364syl 19 . . . . . . . . . . . . . . . . . 18 (𝜑 → Fun 𝐺)
38 df-f1 5857 . . . . . . . . . . . . . . . . . 18 (𝐺:ℕ–1-1𝑍 ↔ (𝐺:ℕ⟶𝑍 ∧ Fun 𝐺))
394, 37, 38sylanbrc 697 . . . . . . . . . . . . . . . . 17 (𝜑𝐺:ℕ–1-1𝑍)
4039adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝐺:ℕ–1-1𝑍)
41 nnex 10978 . . . . . . . . . . . . . . . . 17 ℕ ∈ V
42 ssexg 4769 . . . . . . . . . . . . . . . . 17 (((𝐺 “ (𝑀...𝑁)) ⊆ ℕ ∧ ℕ ∈ V) → (𝐺 “ (𝑀...𝑁)) ∈ V)
438, 41, 42sylancl 693 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ∈ V)
44 f1imaeng 7968 . . . . . . . . . . . . . . . 16 ((𝐺:ℕ–1-1𝑍 ∧ (𝐺 “ (𝑀...𝑁)) ⊆ ℕ ∧ (𝐺 “ (𝑀...𝑁)) ∈ V) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ≈ (𝐺 “ (𝑀...𝑁)))
4540, 8, 43, 44syl3anc 1323 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ≈ (𝐺 “ (𝑀...𝑁)))
4645ensymd 7959 . . . . . . . . . . . . . 14 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ≈ (𝐺 “ (𝐺 “ (𝑀...𝑁))))
47 enfii 8129 . . . . . . . . . . . . . 14 (((𝐺 “ (𝐺 “ (𝑀...𝑁))) ∈ Fin ∧ (𝐺 “ (𝑀...𝑁)) ≈ (𝐺 “ (𝐺 “ (𝑀...𝑁)))) → (𝐺 “ (𝑀...𝑁)) ∈ Fin)
4822, 46, 47syl2anc 692 . . . . . . . . . . . . 13 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ∈ Fin)
49 1nn 10983 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
5049a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 1 ∈ ℕ)
51 ffvelrn 6318 . . . . . . . . . . . . . . . . . . 19 ((𝐺:ℕ⟶𝑍 ∧ 1 ∈ ℕ) → (𝐺‘1) ∈ 𝑍)
524, 49, 51sylancl 693 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐺‘1) ∈ 𝑍)
5352, 24syl6eleq 2708 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺‘1) ∈ (ℤ𝑀))
5453adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘1) ∈ (ℤ𝑀))
55 simpr 477 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝑁 ∈ (ℤ‘(𝐺‘1)))
56 elfzuzb 12286 . . . . . . . . . . . . . . . 16 ((𝐺‘1) ∈ (𝑀...𝑁) ↔ ((𝐺‘1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ‘(𝐺‘1))))
5754, 55, 56sylanbrc 697 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘1) ∈ (𝑀...𝑁))
585, 29syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝐺 Fn ℕ)
59 elpreima 6298 . . . . . . . . . . . . . . . 16 (𝐺 Fn ℕ → (1 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁))))
6058, 59syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁))))
6150, 57, 60mpbir2and 956 . . . . . . . . . . . . . 14 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 1 ∈ (𝐺 “ (𝑀...𝑁)))
62 ne0i 3902 . . . . . . . . . . . . . 14 (1 ∈ (𝐺 “ (𝑀...𝑁)) → (𝐺 “ (𝑀...𝑁)) ≠ ∅)
6361, 62syl 17 . . . . . . . . . . . . 13 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ≠ ∅)
64 nnssre 10976 . . . . . . . . . . . . . 14 ℕ ⊆ ℝ
658, 64syl6ss 3599 . . . . . . . . . . . . 13 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ⊆ ℝ)
66 fisupcl 8327 . . . . . . . . . . . . 13 (( < Or ℝ ∧ ((𝐺 “ (𝑀...𝑁)) ∈ Fin ∧ (𝐺 “ (𝑀...𝑁)) ≠ ∅ ∧ (𝐺 “ (𝑀...𝑁)) ⊆ ℝ)) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ (𝐺 “ (𝑀...𝑁)))
6714, 48, 63, 65, 66syl13anc 1325 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ (𝐺 “ (𝑀...𝑁)))
688, 67sseldd 3588 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ)
6968nnzd 11433 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℤ)
70 elfz5 12284 . . . . . . . . . 10 ((𝑥 ∈ (ℤ‘1) ∧ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℤ) → (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < )))
7112, 69, 70syl2anr 495 . . . . . . . . 9 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < )))
72 elpreima 6298 . . . . . . . . . . . . . . . . . 18 (𝐺 Fn ℕ → (sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ (𝐺 “ (𝑀...𝑁)) ↔ (sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ ∧ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ (𝑀...𝑁))))
7358, 72syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ (𝐺 “ (𝑀...𝑁)) ↔ (sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ ∧ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ (𝑀...𝑁))))
7467, 73mpbid 222 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ ∧ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ (𝑀...𝑁)))
7574simprd 479 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ (𝑀...𝑁))
76 elfzle2 12295 . . . . . . . . . . . . . . 15 ((𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ (𝑀...𝑁) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁)
7775, 76syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁)
7877adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁)
79 uzssz 11659 . . . . . . . . . . . . . . . . 17 (ℤ𝑀) ⊆ ℤ
8024, 79eqsstri 3619 . . . . . . . . . . . . . . . 16 𝑍 ⊆ ℤ
81 zssre 11336 . . . . . . . . . . . . . . . 16 ℤ ⊆ ℝ
8280, 81sstri 3596 . . . . . . . . . . . . . . 15 𝑍 ⊆ ℝ
835ffvelrnda 6320 . . . . . . . . . . . . . . 15 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ 𝑍)
8482, 83sseldi 3585 . . . . . . . . . . . . . 14 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ ℝ)
855, 68ffvelrnd 6321 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ 𝑍)
8685adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ 𝑍)
8782, 86sseldi 3585 . . . . . . . . . . . . . 14 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ ℝ)
88 eluzelz 11649 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘(𝐺‘1)) → 𝑁 ∈ ℤ)
8988ad2antlr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈ ℤ)
9081, 89sseldi 3585 . . . . . . . . . . . . . 14 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈ ℝ)
91 letr 10083 . . . . . . . . . . . . . 14 (((𝐺𝑥) ∈ ℝ ∧ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝐺𝑥) ≤ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∧ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁) → (𝐺𝑥) ≤ 𝑁))
9284, 87, 90, 91syl3anc 1323 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (((𝐺𝑥) ≤ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∧ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁) → (𝐺𝑥) ≤ 𝑁))
9378, 92mpan2d 709 . . . . . . . . . . . 12 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ((𝐺𝑥) ≤ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) → (𝐺𝑥) ≤ 𝑁))
9433ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)))
9564a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ℕ ⊆ ℝ)
96 ressxr 10035 . . . . . . . . . . . . . 14 ℝ ⊆ ℝ*
9795, 96syl6ss 3599 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ℕ ⊆ ℝ*)
98 imassrn 5441 . . . . . . . . . . . . . . . 16 (𝐺 “ ℕ) ⊆ ran 𝐺
994ad2antrr 761 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝐺:ℕ⟶𝑍)
100 frn 6015 . . . . . . . . . . . . . . . . 17 (𝐺:ℕ⟶𝑍 → ran 𝐺𝑍)
10199, 100syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ran 𝐺𝑍)
10298, 101syl5ss 3598 . . . . . . . . . . . . . . 15 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺 “ ℕ) ⊆ 𝑍)
103102, 82syl6ss 3599 . . . . . . . . . . . . . 14 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺 “ ℕ) ⊆ ℝ)
104103, 96syl6ss 3599 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺 “ ℕ) ⊆ ℝ*)
105 simpr 477 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
10668adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ)
107 leisorel 13190 . . . . . . . . . . . . 13 ((𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)) ∧ (ℕ ⊆ ℝ* ∧ (𝐺 “ ℕ) ⊆ ℝ*) ∧ (𝑥 ∈ ℕ ∧ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ)) → (𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ↔ (𝐺𝑥) ≤ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))))
10894, 97, 104, 105, 106, 107syl122anc 1332 . . . . . . . . . . . 12 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ↔ (𝐺𝑥) ≤ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))))
10983, 24syl6eleq 2708 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ (ℤ𝑀))
110 elfz5 12284 . . . . . . . . . . . . 13 (((𝐺𝑥) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → ((𝐺𝑥) ∈ (𝑀...𝑁) ↔ (𝐺𝑥) ≤ 𝑁))
111109, 89, 110syl2anc 692 . . . . . . . . . . . 12 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ((𝐺𝑥) ∈ (𝑀...𝑁) ↔ (𝐺𝑥) ≤ 𝑁))
11293, 108, 1113imtr4d 283 . . . . . . . . . . 11 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) → (𝐺𝑥) ∈ (𝑀...𝑁)))
113 elpreima 6298 . . . . . . . . . . . . 13 (𝐺 Fn ℕ → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (𝑥 ∈ ℕ ∧ (𝐺𝑥) ∈ (𝑀...𝑁))))
114113baibd 947 . . . . . . . . . . . 12 ((𝐺 Fn ℕ ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (𝐺𝑥) ∈ (𝑀...𝑁)))
11558, 114sylan 488 . . . . . . . . . . 11 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (𝐺𝑥) ∈ (𝑀...𝑁)))
116112, 115sylibrd 249 . . . . . . . . . 10 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) → 𝑥 ∈ (𝐺 “ (𝑀...𝑁))))
117 fimaxre2 10921 . . . . . . . . . . . . 13 (((𝐺 “ (𝑀...𝑁)) ⊆ ℝ ∧ (𝐺 “ (𝑀...𝑁)) ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐺 “ (𝑀...𝑁))𝑦𝑥)
11865, 48, 117syl2anc 692 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐺 “ (𝑀...𝑁))𝑦𝑥)
119 suprub 10936 . . . . . . . . . . . . 13 ((((𝐺 “ (𝑀...𝑁)) ⊆ ℝ ∧ (𝐺 “ (𝑀...𝑁)) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐺 “ (𝑀...𝑁))𝑦𝑥) ∧ 𝑥 ∈ (𝐺 “ (𝑀...𝑁))) → 𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))
120119ex 450 . . . . . . . . . . . 12 (((𝐺 “ (𝑀...𝑁)) ⊆ ℝ ∧ (𝐺 “ (𝑀...𝑁)) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐺 “ (𝑀...𝑁))𝑦𝑥) → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) → 𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < )))
12165, 63, 118, 120syl3anc 1323 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) → 𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < )))
122121adantr 481 . . . . . . . . . 10 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) → 𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < )))
123116, 122impbid 202 . . . . . . . . 9 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ↔ 𝑥 ∈ (𝐺 “ (𝑀...𝑁))))
12471, 123bitrd 268 . . . . . . . 8 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ∈ (𝐺 “ (𝑀...𝑁))))
125124ex 450 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑥 ∈ ℕ → (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ∈ (𝐺 “ (𝑀...𝑁)))))
1262, 9, 125pm5.21ndd 369 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ∈ (𝐺 “ (𝑀...𝑁))))
127126eqrdv 2619 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) = (𝐺 “ (𝑀...𝑁)))
128127fveq2d 6157 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (#‘(1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))) = (#‘(𝐺 “ (𝑀...𝑁))))
12968nnnn0d 11303 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ0)
130 hashfz1 13082 . . . . 5 (sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ0 → (#‘(1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))) = sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))
131129, 130syl 17 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (#‘(1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))) = sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))
132 hashen 13083 . . . . . 6 (((𝐺 “ (𝑀...𝑁)) ∈ Fin ∧ (𝐺 “ (𝐺 “ (𝑀...𝑁))) ∈ Fin) → ((#‘(𝐺 “ (𝑀...𝑁))) = (#‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))) ↔ (𝐺 “ (𝑀...𝑁)) ≈ (𝐺 “ (𝐺 “ (𝑀...𝑁)))))
13348, 22, 132syl2anc 692 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((#‘(𝐺 “ (𝑀...𝑁))) = (#‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))) ↔ (𝐺 “ (𝑀...𝑁)) ≈ (𝐺 “ (𝐺 “ (𝑀...𝑁)))))
13446, 133mpbird 247 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (#‘(𝐺 “ (𝑀...𝑁))) = (#‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))
135128, 131, 1343eqtr3d 2663 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) = (#‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))
136135oveq2d 6626 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) = (1...(#‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))))
137136, 127eqtr3d 2657 1 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1...(#‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))) = (𝐺 “ (𝑀...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  Vcvv 3189  cin 3558  wss 3559  c0 3896   class class class wbr 4618   Or wor 4999  ccnv 5078  dom cdm 5079  ran crn 5080  cres 5081  cima 5082  Fun wfun 5846   Fn wfn 5847  wf 5848  1-1wf1 5849  1-1-ontowf1o 5851  cfv 5852   Isom wiso 5853  (class class class)co 6610  cen 7904  Fincfn 7907  supcsup 8298  cr 9887  1c1 9889   + caddc 9891  *cxr 10025   < clt 10026  cle 10027  cn 10972  0cn0 11244  cz 11329  cuz 11639  ...cfz 12276  #chash 13065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-n0 11245  df-z 11330  df-uz 11640  df-fz 12277  df-hash 13066
This theorem is referenced by:  isercolllem3  14339
  Copyright terms: Public domain W3C validator