MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iserd Structured version   Visualization version   GIF version

Theorem iserd 8304
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
iserd.1 (𝜑 → Rel 𝑅)
iserd.2 ((𝜑𝑥𝑅𝑦) → 𝑦𝑅𝑥)
iserd.3 ((𝜑 ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)) → 𝑥𝑅𝑧)
iserd.4 (𝜑 → (𝑥𝐴𝑥𝑅𝑥))
Assertion
Ref Expression
iserd (𝜑𝑅 Er 𝐴)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧)

Proof of Theorem iserd
StepHypRef Expression
1 iserd.1 . . 3 (𝜑 → Rel 𝑅)
2 eqidd 2819 . . 3 (𝜑 → dom 𝑅 = dom 𝑅)
3 iserd.2 . . . . . . . 8 ((𝜑𝑥𝑅𝑦) → 𝑦𝑅𝑥)
43ex 413 . . . . . . 7 (𝜑 → (𝑥𝑅𝑦𝑦𝑅𝑥))
5 iserd.3 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)) → 𝑥𝑅𝑧)
65ex 413 . . . . . . 7 (𝜑 → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
74, 6jca 512 . . . . . 6 (𝜑 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
87alrimiv 1919 . . . . 5 (𝜑 → ∀𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
98alrimiv 1919 . . . 4 (𝜑 → ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
109alrimiv 1919 . . 3 (𝜑 → ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
11 dfer2 8279 . . 3 (𝑅 Er dom 𝑅 ↔ (Rel 𝑅 ∧ dom 𝑅 = dom 𝑅 ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
121, 2, 10, 11syl3anbrc 1335 . 2 (𝜑𝑅 Er dom 𝑅)
1312adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝑅) → 𝑅 Er dom 𝑅)
14 simpr 485 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝑅) → 𝑥 ∈ dom 𝑅)
1513, 14erref 8298 . . . . . . 7 ((𝜑𝑥 ∈ dom 𝑅) → 𝑥𝑅𝑥)
1615ex 413 . . . . . 6 (𝜑 → (𝑥 ∈ dom 𝑅𝑥𝑅𝑥))
17 vex 3495 . . . . . . 7 𝑥 ∈ V
1817, 17breldm 5770 . . . . . 6 (𝑥𝑅𝑥𝑥 ∈ dom 𝑅)
1916, 18impbid1 226 . . . . 5 (𝜑 → (𝑥 ∈ dom 𝑅𝑥𝑅𝑥))
20 iserd.4 . . . . 5 (𝜑 → (𝑥𝐴𝑥𝑅𝑥))
2119, 20bitr4d 283 . . . 4 (𝜑 → (𝑥 ∈ dom 𝑅𝑥𝐴))
2221eqrdv 2816 . . 3 (𝜑 → dom 𝑅 = 𝐴)
23 ereq2 8286 . . 3 (dom 𝑅 = 𝐴 → (𝑅 Er dom 𝑅𝑅 Er 𝐴))
2422, 23syl 17 . 2 (𝜑 → (𝑅 Er dom 𝑅𝑅 Er 𝐴))
2512, 24mpbid 233 1 (𝜑𝑅 Er 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wal 1526   = wceq 1528  wcel 2105   class class class wbr 5057  dom cdm 5548  Rel wrel 5553   Er wer 8275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-br 5058  df-opab 5120  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-er 8278
This theorem is referenced by:  iseri  8305  iseriALT  8306  swoer  8308  iiner  8358  erinxp  8360  cicer  17064  eqger  18268  gaorber  18376  efgrelexlemb  18805  efgcpbllemb  18810  xmeter  22970  ercgrg  26230  metider  31033  prjsper  39136
  Copyright terms: Public domain W3C validator