MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseri Structured version   Visualization version   GIF version

Theorem iseri 7754
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. Inference version of iserd 7753, which avoids the need to provide a "dummy antecedent" 𝜑 if there is no natural one to choose. (Contributed by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
iseri.1 Rel 𝑅
iseri.2 (𝑥𝑅𝑦𝑦𝑅𝑥)
iseri.3 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)
iseri.4 (𝑥𝐴𝑥𝑅𝑥)
Assertion
Ref Expression
iseri 𝑅 Er 𝐴
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴
Allowed substitution hints:   𝐴(𝑦,𝑧)

Proof of Theorem iseri
StepHypRef Expression
1 iseri.1 . . . 4 Rel 𝑅
21a1i 11 . . 3 (⊤ → Rel 𝑅)
3 iseri.2 . . . 4 (𝑥𝑅𝑦𝑦𝑅𝑥)
43adantl 482 . . 3 ((⊤ ∧ 𝑥𝑅𝑦) → 𝑦𝑅𝑥)
5 iseri.3 . . . 4 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)
65adantl 482 . . 3 ((⊤ ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)) → 𝑥𝑅𝑧)
7 iseri.4 . . . 4 (𝑥𝐴𝑥𝑅𝑥)
87a1i 11 . . 3 (⊤ → (𝑥𝐴𝑥𝑅𝑥))
92, 4, 6, 8iserd 7753 . 2 (⊤ → 𝑅 Er 𝐴)
109trud 1491 1 𝑅 Er 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wtru 1482  wcel 1988   class class class wbr 4644  Rel wrel 5109   Er wer 7724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-br 4645  df-opab 4704  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-er 7727
This theorem is referenced by:  eqer  7762  0er  7765  ecopover  7836  ener  7987  gicer  17699  phtpcer  22775  vitalilem1  23357  erclwwlks  26917  erclwwlksn  26929
  Copyright terms: Public domain W3C validator