Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isermulc2 Structured version   Visualization version   GIF version

Theorem isermulc2 14317
 Description: Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007.) (Revised by Mario Carneiro, 1-Feb-2014.)
Hypotheses
Ref Expression
clim2ser.1 𝑍 = (ℤ𝑀)
isermulc2.2 (𝜑𝑀 ∈ ℤ)
isermulc2.4 (𝜑𝐶 ∈ ℂ)
isermulc2.5 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
isermulc2.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
isermulc2.7 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐶 · (𝐹𝑘)))
Assertion
Ref Expression
isermulc2 (𝜑 → seq𝑀( + , 𝐺) ⇝ (𝐶 · 𝐴))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝐶,𝑘   𝑘,𝐺   𝜑,𝑘   𝑘,𝑍

Proof of Theorem isermulc2
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clim2ser.1 . 2 𝑍 = (ℤ𝑀)
2 isermulc2.2 . 2 (𝜑𝑀 ∈ ℤ)
3 isermulc2.5 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
4 isermulc2.4 . 2 (𝜑𝐶 ∈ ℂ)
5 seqex 12740 . . 3 seq𝑀( + , 𝐺) ∈ V
65a1i 11 . 2 (𝜑 → seq𝑀( + , 𝐺) ∈ V)
7 isermulc2.6 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
81, 2, 7serf 12766 . . 3 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
98ffvelrnda 6316 . 2 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ)
10 addcl 9963 . . . 4 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 + 𝑥) ∈ ℂ)
1110adantl 482 . . 3 (((𝜑𝑗𝑍) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ)
124adantr 481 . . . 4 ((𝜑𝑗𝑍) → 𝐶 ∈ ℂ)
13 adddi 9970 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐶 · (𝑘 + 𝑥)) = ((𝐶 · 𝑘) + (𝐶 · 𝑥)))
14133expb 1263 . . . 4 ((𝐶 ∈ ℂ ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐶 · (𝑘 + 𝑥)) = ((𝐶 · 𝑘) + (𝐶 · 𝑥)))
1512, 14sylan 488 . . 3 (((𝜑𝑗𝑍) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐶 · (𝑘 + 𝑥)) = ((𝐶 · 𝑘) + (𝐶 · 𝑥)))
16 simpr 477 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝑍)
1716, 1syl6eleq 2714 . . 3 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
18 elfzuz 12277 . . . . . 6 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
1918, 1syl6eleqr 2715 . . . . 5 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
2019, 7sylan2 491 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
2120adantlr 750 . . 3 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
22 isermulc2.7 . . . . 5 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐶 · (𝐹𝑘)))
2319, 22sylan2 491 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) = (𝐶 · (𝐹𝑘)))
2423adantlr 750 . . 3 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) = (𝐶 · (𝐹𝑘)))
2511, 15, 17, 21, 24seqdistr 12789 . 2 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐺)‘𝑗) = (𝐶 · (seq𝑀( + , 𝐹)‘𝑗)))
261, 2, 3, 4, 6, 9, 25climmulc2 14296 1 (𝜑 → seq𝑀( + , 𝐺) ⇝ (𝐶 · 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1992  Vcvv 3191   class class class wbr 4618  ‘cfv 5850  (class class class)co 6605  ℂcc 9879   + caddc 9884   · cmul 9886  ℤcz 11322  ℤ≥cuz 11631  ...cfz 12265  seqcseq 12738   ⇝ cli 14144 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-fz 12266  df-seq 12739  df-exp 12798  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-clim 14148 This theorem is referenced by:  isummulc2  14416  cvgcmpce  14472  mertens  14538  ege2le3  14740  eftlub  14759  geolim3  23993  abelthlem6  24089  abelthlem7  24091  logtayl2  24303  atantayl  24559  log2cnv  24566  log2tlbnd  24567  lgamgulmlem4  24653  geomcau  33173  binomcxplemnotnn0  38023  fouriersw  39742
 Copyright terms: Public domain W3C validator