MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem6 Structured version   Visualization version   GIF version

Theorem isf32lem6 9779
Description: Lemma for isfin3-2 9788. Each K value is nonempty. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
isf32lem.d 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
isf32lem.e 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
isf32lem.f 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
Assertion
Ref Expression
isf32lem6 ((𝜑𝐴 ∈ ω) → (𝐾𝐴) ≠ ∅)
Distinct variable groups:   𝑥,𝑤   𝑣,𝑢,𝑤,𝑥,𝑦,𝜑   𝑤,𝐴,𝑥,𝑦   𝑤,𝐹,𝑥,𝑦   𝑢,𝑆,𝑣,𝑤,𝑥,𝑦   𝑤,𝐽,𝑥,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐴(𝑣,𝑢)   𝐹(𝑣,𝑢)   𝐺(𝑥,𝑦,𝑤,𝑣,𝑢)   𝐽(𝑣,𝑢)   𝐾(𝑤,𝑣,𝑢)

Proof of Theorem isf32lem6
StepHypRef Expression
1 isf32lem.f . . . 4 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
21fveq1i 6670 . . 3 (𝐾𝐴) = (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴)
3 isf32lem.d . . . . . . . 8 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
43ssrab3 4056 . . . . . . 7 𝑆 ⊆ ω
5 isf32lem.a . . . . . . . 8 (𝜑𝐹:ω⟶𝒫 𝐺)
6 isf32lem.b . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
7 isf32lem.c . . . . . . . 8 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
85, 6, 7, 3isf32lem5 9778 . . . . . . 7 (𝜑 → ¬ 𝑆 ∈ Fin)
9 isf32lem.e . . . . . . . 8 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
109fin23lem22 9748 . . . . . . 7 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐽:ω–1-1-onto𝑆)
114, 8, 10sylancr 589 . . . . . 6 (𝜑𝐽:ω–1-1-onto𝑆)
12 f1of 6614 . . . . . 6 (𝐽:ω–1-1-onto𝑆𝐽:ω⟶𝑆)
1311, 12syl 17 . . . . 5 (𝜑𝐽:ω⟶𝑆)
14 fvco3 6759 . . . . 5 ((𝐽:ω⟶𝑆𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)))
1513, 14sylan 582 . . . 4 ((𝜑𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)))
168adantr 483 . . . . . . . 8 ((𝜑𝐴 ∈ ω) → ¬ 𝑆 ∈ Fin)
174, 16, 10sylancr 589 . . . . . . 7 ((𝜑𝐴 ∈ ω) → 𝐽:ω–1-1-onto𝑆)
1817, 12syl 17 . . . . . 6 ((𝜑𝐴 ∈ ω) → 𝐽:ω⟶𝑆)
19 ffvelrn 6848 . . . . . 6 ((𝐽:ω⟶𝑆𝐴 ∈ ω) → (𝐽𝐴) ∈ 𝑆)
2018, 19sylancom 590 . . . . 5 ((𝜑𝐴 ∈ ω) → (𝐽𝐴) ∈ 𝑆)
21 fveq2 6669 . . . . . . 7 (𝑤 = (𝐽𝐴) → (𝐹𝑤) = (𝐹‘(𝐽𝐴)))
22 suceq 6255 . . . . . . . 8 (𝑤 = (𝐽𝐴) → suc 𝑤 = suc (𝐽𝐴))
2322fveq2d 6673 . . . . . . 7 (𝑤 = (𝐽𝐴) → (𝐹‘suc 𝑤) = (𝐹‘suc (𝐽𝐴)))
2421, 23difeq12d 4099 . . . . . 6 (𝑤 = (𝐽𝐴) → ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
25 eqid 2821 . . . . . 6 (𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) = (𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))
26 fvex 6682 . . . . . . 7 (𝐹‘(𝐽𝐴)) ∈ V
2726difexi 5231 . . . . . 6 ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ∈ V
2824, 25, 27fvmpt 6767 . . . . 5 ((𝐽𝐴) ∈ 𝑆 → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
2920, 28syl 17 . . . 4 ((𝜑𝐴 ∈ ω) → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
3015, 29eqtrd 2856 . . 3 ((𝜑𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
312, 30syl5eq 2868 . 2 ((𝜑𝐴 ∈ ω) → (𝐾𝐴) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
32 suceq 6255 . . . . . . . . 9 (𝑦 = (𝐽𝐴) → suc 𝑦 = suc (𝐽𝐴))
3332fveq2d 6673 . . . . . . . 8 (𝑦 = (𝐽𝐴) → (𝐹‘suc 𝑦) = (𝐹‘suc (𝐽𝐴)))
34 fveq2 6669 . . . . . . . 8 (𝑦 = (𝐽𝐴) → (𝐹𝑦) = (𝐹‘(𝐽𝐴)))
3533, 34psseq12d 4070 . . . . . . 7 (𝑦 = (𝐽𝐴) → ((𝐹‘suc 𝑦) ⊊ (𝐹𝑦) ↔ (𝐹‘suc (𝐽𝐴)) ⊊ (𝐹‘(𝐽𝐴))))
3635, 3elrab2 3682 . . . . . 6 ((𝐽𝐴) ∈ 𝑆 ↔ ((𝐽𝐴) ∈ ω ∧ (𝐹‘suc (𝐽𝐴)) ⊊ (𝐹‘(𝐽𝐴))))
3736simprbi 499 . . . . 5 ((𝐽𝐴) ∈ 𝑆 → (𝐹‘suc (𝐽𝐴)) ⊊ (𝐹‘(𝐽𝐴)))
3820, 37syl 17 . . . 4 ((𝜑𝐴 ∈ ω) → (𝐹‘suc (𝐽𝐴)) ⊊ (𝐹‘(𝐽𝐴)))
39 df-pss 3953 . . . 4 ((𝐹‘suc (𝐽𝐴)) ⊊ (𝐹‘(𝐽𝐴)) ↔ ((𝐹‘suc (𝐽𝐴)) ⊆ (𝐹‘(𝐽𝐴)) ∧ (𝐹‘suc (𝐽𝐴)) ≠ (𝐹‘(𝐽𝐴))))
4038, 39sylib 220 . . 3 ((𝜑𝐴 ∈ ω) → ((𝐹‘suc (𝐽𝐴)) ⊆ (𝐹‘(𝐽𝐴)) ∧ (𝐹‘suc (𝐽𝐴)) ≠ (𝐹‘(𝐽𝐴))))
41 pssdifn0 4324 . . 3 (((𝐹‘suc (𝐽𝐴)) ⊆ (𝐹‘(𝐽𝐴)) ∧ (𝐹‘suc (𝐽𝐴)) ≠ (𝐹‘(𝐽𝐴))) → ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ≠ ∅)
4240, 41syl 17 . 2 ((𝜑𝐴 ∈ ω) → ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ≠ ∅)
4331, 42eqnetrd 3083 1 ((𝜑𝐴 ∈ ω) → (𝐾𝐴) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  {crab 3142  cdif 3932  cin 3934  wss 3935  wpss 3936  c0 4290  𝒫 cpw 4538   cint 4875   class class class wbr 5065  cmpt 5145  ran crn 5555  ccom 5558  suc csuc 6192  wf 6350  1-1-ontowf1o 6353  cfv 6354  crio 7112  ωcom 7579  cen 8505  Fincfn 8508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-om 7580  df-wrecs 7946  df-recs 8007  df-1o 8101  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-card 9367
This theorem is referenced by:  isf32lem9  9782
  Copyright terms: Public domain W3C validator