MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem7 Structured version   Visualization version   GIF version

Theorem isf32lem7 9769
Description: Lemma for isfin3-2 9777. Different K values are disjoint. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
isf32lem.d 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
isf32lem.e 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
isf32lem.f 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
Assertion
Ref Expression
isf32lem7 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐾𝐴) ∩ (𝐾𝐵)) = ∅)
Distinct variable groups:   𝑥,𝑤,𝐵   𝑣,𝑢,𝑤,𝑥,𝑦,𝜑   𝑤,𝐴,𝑥,𝑦   𝑤,𝐹,𝑥,𝑦   𝑢,𝑆,𝑣,𝑤,𝑥,𝑦   𝑤,𝐽,𝑥,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐴(𝑣,𝑢)   𝐵(𝑦,𝑣,𝑢)   𝐹(𝑣,𝑢)   𝐺(𝑥,𝑦,𝑤,𝑣,𝑢)   𝐽(𝑣,𝑢)   𝐾(𝑤,𝑣,𝑢)

Proof of Theorem isf32lem7
StepHypRef Expression
1 isf32lem.f . . . . 5 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
21fveq1i 6664 . . . 4 (𝐾𝐴) = (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴)
3 isf32lem.d . . . . . . . . . 10 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
43ssrab3 4054 . . . . . . . . 9 𝑆 ⊆ ω
5 isf32lem.a . . . . . . . . . 10 (𝜑𝐹:ω⟶𝒫 𝐺)
6 isf32lem.b . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
7 isf32lem.c . . . . . . . . . 10 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
85, 6, 7, 3isf32lem5 9767 . . . . . . . . 9 (𝜑 → ¬ 𝑆 ∈ Fin)
9 isf32lem.e . . . . . . . . . 10 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
109fin23lem22 9737 . . . . . . . . 9 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐽:ω–1-1-onto𝑆)
114, 8, 10sylancr 587 . . . . . . . 8 (𝜑𝐽:ω–1-1-onto𝑆)
12 f1of 6608 . . . . . . . 8 (𝐽:ω–1-1-onto𝑆𝐽:ω⟶𝑆)
1311, 12syl 17 . . . . . . 7 (𝜑𝐽:ω⟶𝑆)
14 fvco3 6753 . . . . . . 7 ((𝐽:ω⟶𝑆𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)))
1513, 14sylan 580 . . . . . 6 ((𝜑𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)))
1615ad2ant2r 743 . . . . 5 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)))
1713adantr 481 . . . . . . 7 ((𝜑𝐴𝐵) → 𝐽:ω⟶𝑆)
18 simpl 483 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω)
19 ffvelrn 6841 . . . . . . 7 ((𝐽:ω⟶𝑆𝐴 ∈ ω) → (𝐽𝐴) ∈ 𝑆)
2017, 18, 19syl2an 595 . . . . . 6 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐽𝐴) ∈ 𝑆)
21 fveq2 6663 . . . . . . . 8 (𝑤 = (𝐽𝐴) → (𝐹𝑤) = (𝐹‘(𝐽𝐴)))
22 suceq 6249 . . . . . . . . 9 (𝑤 = (𝐽𝐴) → suc 𝑤 = suc (𝐽𝐴))
2322fveq2d 6667 . . . . . . . 8 (𝑤 = (𝐽𝐴) → (𝐹‘suc 𝑤) = (𝐹‘suc (𝐽𝐴)))
2421, 23difeq12d 4097 . . . . . . 7 (𝑤 = (𝐽𝐴) → ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
25 eqid 2818 . . . . . . 7 (𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) = (𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))
26 fvex 6676 . . . . . . . 8 (𝐹‘(𝐽𝐴)) ∈ V
2726difexi 5223 . . . . . . 7 ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ∈ V
2824, 25, 27fvmpt 6761 . . . . . 6 ((𝐽𝐴) ∈ 𝑆 → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
2920, 28syl 17 . . . . 5 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
3016, 29eqtrd 2853 . . . 4 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
312, 30syl5eq 2865 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐾𝐴) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
321fveq1i 6664 . . . 4 (𝐾𝐵) = (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐵)
33 fvco3 6753 . . . . . . 7 ((𝐽:ω⟶𝑆𝐵 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐵) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐵)))
3413, 33sylan 580 . . . . . 6 ((𝜑𝐵 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐵) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐵)))
3534ad2ant2rl 745 . . . . 5 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐵) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐵)))
36 simpr 485 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ∈ ω)
37 ffvelrn 6841 . . . . . . 7 ((𝐽:ω⟶𝑆𝐵 ∈ ω) → (𝐽𝐵) ∈ 𝑆)
3817, 36, 37syl2an 595 . . . . . 6 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐽𝐵) ∈ 𝑆)
39 fveq2 6663 . . . . . . . 8 (𝑤 = (𝐽𝐵) → (𝐹𝑤) = (𝐹‘(𝐽𝐵)))
40 suceq 6249 . . . . . . . . 9 (𝑤 = (𝐽𝐵) → suc 𝑤 = suc (𝐽𝐵))
4140fveq2d 6667 . . . . . . . 8 (𝑤 = (𝐽𝐵) → (𝐹‘suc 𝑤) = (𝐹‘suc (𝐽𝐵)))
4239, 41difeq12d 4097 . . . . . . 7 (𝑤 = (𝐽𝐵) → ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)) = ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))))
43 fvex 6676 . . . . . . . 8 (𝐹‘(𝐽𝐵)) ∈ V
4443difexi 5223 . . . . . . 7 ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))) ∈ V
4542, 25, 44fvmpt 6761 . . . . . 6 ((𝐽𝐵) ∈ 𝑆 → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐵)) = ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))))
4638, 45syl 17 . . . . 5 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐵)) = ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))))
4735, 46eqtrd 2853 . . . 4 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐵) = ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))))
4832, 47syl5eq 2865 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐾𝐵) = ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))))
4931, 48ineq12d 4187 . 2 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐾𝐴) ∩ (𝐾𝐵)) = (((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ∩ ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵)))))
50 simpll 763 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → 𝜑)
51 simplr 765 . . . 4 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → 𝐴𝐵)
52 f1of1 6607 . . . . . . . . 9 (𝐽:ω–1-1-onto𝑆𝐽:ω–1-1𝑆)
5311, 52syl 17 . . . . . . . 8 (𝜑𝐽:ω–1-1𝑆)
5453adantr 481 . . . . . . 7 ((𝜑𝐴𝐵) → 𝐽:ω–1-1𝑆)
55 f1fveq 7011 . . . . . . 7 ((𝐽:ω–1-1𝑆 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐽𝐴) = (𝐽𝐵) ↔ 𝐴 = 𝐵))
5654, 55sylan 580 . . . . . 6 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐽𝐴) = (𝐽𝐵) ↔ 𝐴 = 𝐵))
5756biimpd 230 . . . . 5 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐽𝐴) = (𝐽𝐵) → 𝐴 = 𝐵))
5857necon3d 3034 . . . 4 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 → (𝐽𝐴) ≠ (𝐽𝐵)))
5951, 58mpd 15 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐽𝐴) ≠ (𝐽𝐵))
604, 20sseldi 3962 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐽𝐴) ∈ ω)
614, 38sseldi 3962 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐽𝐵) ∈ ω)
625, 6, 7isf32lem4 9766 . . 3 (((𝜑 ∧ (𝐽𝐴) ≠ (𝐽𝐵)) ∧ ((𝐽𝐴) ∈ ω ∧ (𝐽𝐵) ∈ ω)) → (((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ∩ ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵)))) = ∅)
6350, 59, 60, 61, 62syl22anc 834 . 2 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ∩ ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵)))) = ∅)
6449, 63eqtrd 2853 1 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐾𝐴) ∩ (𝐾𝐵)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3013  wral 3135  {crab 3139  cdif 3930  cin 3932  wss 3933  wpss 3934  c0 4288  𝒫 cpw 4535   cint 4867   class class class wbr 5057  cmpt 5137  ran crn 5549  ccom 5552  suc csuc 6186  wf 6344  1-1wf1 6345  1-1-ontowf1o 6347  cfv 6348  crio 7102  ωcom 7569  cen 8494  Fincfn 8497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-om 7570  df-wrecs 7936  df-recs 7997  df-1o 8091  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356
This theorem is referenced by:  isf32lem9  9771
  Copyright terms: Public domain W3C validator