MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem2 Structured version   Visualization version   GIF version

Theorem isf34lem2 9385
Description: Lemma for isfin3-4 9394. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
isf34lem2 (𝐴𝑉𝐹:𝒫 𝐴⟶𝒫 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem isf34lem2
StepHypRef Expression
1 difss 3878 . . . 4 (𝐴𝑥) ⊆ 𝐴
2 elpw2g 4974 . . . 4 (𝐴𝑉 → ((𝐴𝑥) ∈ 𝒫 𝐴 ↔ (𝐴𝑥) ⊆ 𝐴))
31, 2mpbiri 248 . . 3 (𝐴𝑉 → (𝐴𝑥) ∈ 𝒫 𝐴)
43adantr 472 . 2 ((𝐴𝑉𝑥 ∈ 𝒫 𝐴) → (𝐴𝑥) ∈ 𝒫 𝐴)
5 compss.a . 2 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
64, 5fmptd 6546 1 (𝐴𝑉𝐹:𝒫 𝐴⟶𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1630  wcel 2137  cdif 3710  wss 3713  𝒫 cpw 4300  cmpt 4879  wf 6043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-sep 4931  ax-nul 4939  ax-pr 5053
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-ral 3053  df-rex 3054  df-rab 3057  df-v 3340  df-sbc 3575  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-op 4326  df-uni 4587  df-br 4803  df-opab 4863  df-mpt 4880  df-id 5172  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-fv 6055
This theorem is referenced by:  isf34lem5  9390  isf34lem7  9391  isf34lem6  9392
  Copyright terms: Public domain W3C validator