MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem5 Structured version   Visualization version   GIF version

Theorem isf34lem5 9794
Description: Lemma for isfin3-4 9798. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
isf34lem5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 𝑋) = (𝐹𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem isf34lem5
StepHypRef Expression
1 imassrn 5934 . . . . . . 7 (𝐹𝑋) ⊆ ran 𝐹
2 compss.a . . . . . . . . . 10 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
32isf34lem2 9789 . . . . . . . . 9 (𝐴𝑉𝐹:𝒫 𝐴⟶𝒫 𝐴)
43adantr 483 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → 𝐹:𝒫 𝐴⟶𝒫 𝐴)
54frnd 6515 . . . . . . 7 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → ran 𝐹 ⊆ 𝒫 𝐴)
61, 5sstrid 3977 . . . . . 6 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹𝑋) ⊆ 𝒫 𝐴)
7 simprl 769 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → 𝑋 ⊆ 𝒫 𝐴)
84fdmd 6517 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → dom 𝐹 = 𝒫 𝐴)
97, 8sseqtrrd 4007 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → 𝑋 ⊆ dom 𝐹)
10 sseqin2 4191 . . . . . . . . 9 (𝑋 ⊆ dom 𝐹 ↔ (dom 𝐹𝑋) = 𝑋)
119, 10sylib 220 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (dom 𝐹𝑋) = 𝑋)
12 simprr 771 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → 𝑋 ≠ ∅)
1311, 12eqnetrd 3083 . . . . . . 7 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (dom 𝐹𝑋) ≠ ∅)
14 imadisj 5942 . . . . . . . 8 ((𝐹𝑋) = ∅ ↔ (dom 𝐹𝑋) = ∅)
1514necon3bii 3068 . . . . . . 7 ((𝐹𝑋) ≠ ∅ ↔ (dom 𝐹𝑋) ≠ ∅)
1613, 15sylibr 236 . . . . . 6 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹𝑋) ≠ ∅)
176, 16jca 514 . . . . 5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → ((𝐹𝑋) ⊆ 𝒫 𝐴 ∧ (𝐹𝑋) ≠ ∅))
182isf34lem4 9793 . . . . 5 ((𝐴𝑉 ∧ ((𝐹𝑋) ⊆ 𝒫 𝐴 ∧ (𝐹𝑋) ≠ ∅)) → (𝐹 (𝐹𝑋)) = (𝐹 “ (𝐹𝑋)))
1917, 18syldan 593 . . . 4 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 (𝐹𝑋)) = (𝐹 “ (𝐹𝑋)))
202isf34lem3 9791 . . . . . 6 ((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹𝑋)) = 𝑋)
2120adantrr 715 . . . . 5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 “ (𝐹𝑋)) = 𝑋)
2221inteqd 4873 . . . 4 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 “ (𝐹𝑋)) = 𝑋)
2319, 22eqtrd 2856 . . 3 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 (𝐹𝑋)) = 𝑋)
2423fveq2d 6668 . 2 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹 𝑋))
252compsscnv 9787 . . . 4 𝐹 = 𝐹
2625fveq1i 6665 . . 3 (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹‘(𝐹 (𝐹𝑋)))
272compssiso 9790 . . . . 5 (𝐴𝑉𝐹 Isom [] , [] (𝒫 𝐴, 𝒫 𝐴))
28 isof1o 7070 . . . . 5 (𝐹 Isom [] , [] (𝒫 𝐴, 𝒫 𝐴) → 𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴)
2927, 28syl 17 . . . 4 (𝐴𝑉𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴)
30 sspwuni 5014 . . . . . 6 ((𝐹𝑋) ⊆ 𝒫 𝐴 (𝐹𝑋) ⊆ 𝐴)
316, 30sylib 220 . . . . 5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹𝑋) ⊆ 𝐴)
32 elpw2g 5239 . . . . . 6 (𝐴𝑉 → ( (𝐹𝑋) ∈ 𝒫 𝐴 (𝐹𝑋) ⊆ 𝐴))
3332adantr 483 . . . . 5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → ( (𝐹𝑋) ∈ 𝒫 𝐴 (𝐹𝑋) ⊆ 𝐴))
3431, 33mpbird 259 . . . 4 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹𝑋) ∈ 𝒫 𝐴)
35 f1ocnvfv1 7027 . . . 4 ((𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴 (𝐹𝑋) ∈ 𝒫 𝐴) → (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹𝑋))
3629, 34, 35syl2an2r 683 . . 3 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹𝑋))
3726, 36syl5eqr 2870 . 2 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹𝑋))
3824, 37eqtr3d 2858 1 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  cdif 3932  cin 3934  wss 3935  c0 4290  𝒫 cpw 4538   cuni 4831   cint 4868  cmpt 5138  ccnv 5548  dom cdm 5549  ran crn 5550  cima 5552  wf 6345  1-1-ontowf1o 6348  cfv 6349   Isom wiso 6350   [] crpss 7442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-int 4869  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-rpss 7443
This theorem is referenced by:  isf34lem7  9795
  Copyright terms: Public domain W3C validator