MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem6 Structured version   Visualization version   GIF version

Theorem isf34lem6 9365
Description: Lemma for isfin3-4 9367. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
isf34lem6 (𝐴𝑉 → (𝐴 ∈ FinIII ↔ ∀𝑓 ∈ (𝒫 𝐴𝑚 ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓)))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝑓,𝐹,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐹(𝑥)   𝑉(𝑓)

Proof of Theorem isf34lem6
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8033 . . . 4 (𝑓 ∈ (𝒫 𝐴𝑚 ω) → 𝑓:ω⟶𝒫 𝐴)
2 compss.a . . . . . 6 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
32isf34lem7 9364 . . . . 5 ((𝐴 ∈ FinIII𝑓:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦)) → ran 𝑓 ∈ ran 𝑓)
433expia 1114 . . . 4 ((𝐴 ∈ FinIII𝑓:ω⟶𝒫 𝐴) → (∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓))
51, 4sylan2 492 . . 3 ((𝐴 ∈ FinIII𝑓 ∈ (𝒫 𝐴𝑚 ω)) → (∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓))
65ralrimiva 3092 . 2 (𝐴 ∈ FinIII → ∀𝑓 ∈ (𝒫 𝐴𝑚 ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓))
7 elmapex 8032 . . . . . . . . . . 11 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (𝒫 𝐴 ∈ V ∧ ω ∈ V))
87simpld 477 . . . . . . . . . 10 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → 𝒫 𝐴 ∈ V)
9 pwexb 7128 . . . . . . . . . 10 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
108, 9sylibr 224 . . . . . . . . 9 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → 𝐴 ∈ V)
112isf34lem2 9358 . . . . . . . . 9 (𝐴 ∈ V → 𝐹:𝒫 𝐴⟶𝒫 𝐴)
1210, 11syl 17 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → 𝐹:𝒫 𝐴⟶𝒫 𝐴)
13 elmapi 8033 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → 𝑔:ω⟶𝒫 𝐴)
14 fco 6207 . . . . . . . 8 ((𝐹:𝒫 𝐴⟶𝒫 𝐴𝑔:ω⟶𝒫 𝐴) → (𝐹𝑔):ω⟶𝒫 𝐴)
1512, 13, 14syl2anc 696 . . . . . . 7 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (𝐹𝑔):ω⟶𝒫 𝐴)
16 elmapg 8024 . . . . . . . 8 ((𝒫 𝐴 ∈ V ∧ ω ∈ V) → ((𝐹𝑔) ∈ (𝒫 𝐴𝑚 ω) ↔ (𝐹𝑔):ω⟶𝒫 𝐴))
177, 16syl 17 . . . . . . 7 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → ((𝐹𝑔) ∈ (𝒫 𝐴𝑚 ω) ↔ (𝐹𝑔):ω⟶𝒫 𝐴))
1815, 17mpbird 247 . . . . . 6 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (𝐹𝑔) ∈ (𝒫 𝐴𝑚 ω))
19 fveq1 6339 . . . . . . . . . 10 (𝑓 = (𝐹𝑔) → (𝑓𝑦) = ((𝐹𝑔)‘𝑦))
20 fveq1 6339 . . . . . . . . . 10 (𝑓 = (𝐹𝑔) → (𝑓‘suc 𝑦) = ((𝐹𝑔)‘suc 𝑦))
2119, 20sseq12d 3763 . . . . . . . . 9 (𝑓 = (𝐹𝑔) → ((𝑓𝑦) ⊆ (𝑓‘suc 𝑦) ↔ ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦)))
2221ralbidv 3112 . . . . . . . 8 (𝑓 = (𝐹𝑔) → (∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) ↔ ∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦)))
23 rneq 5494 . . . . . . . . . . 11 (𝑓 = (𝐹𝑔) → ran 𝑓 = ran (𝐹𝑔))
24 rnco2 5791 . . . . . . . . . . 11 ran (𝐹𝑔) = (𝐹 “ ran 𝑔)
2523, 24syl6eq 2798 . . . . . . . . . 10 (𝑓 = (𝐹𝑔) → ran 𝑓 = (𝐹 “ ran 𝑔))
2625unieqd 4586 . . . . . . . . 9 (𝑓 = (𝐹𝑔) → ran 𝑓 = (𝐹 “ ran 𝑔))
2726, 25eleq12d 2821 . . . . . . . 8 (𝑓 = (𝐹𝑔) → ( ran 𝑓 ∈ ran 𝑓 (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔)))
2822, 27imbi12d 333 . . . . . . 7 (𝑓 = (𝐹𝑔) → ((∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) ↔ (∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) → (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔))))
2928rspccv 3434 . . . . . 6 (∀𝑓 ∈ (𝒫 𝐴𝑚 ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → ((𝐹𝑔) ∈ (𝒫 𝐴𝑚 ω) → (∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) → (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔))))
3018, 29syl5 34 . . . . 5 (∀𝑓 ∈ (𝒫 𝐴𝑚 ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) → (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔))))
31 sscon 3875 . . . . . . . . 9 ((𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → (𝐴 ∖ (𝑔𝑦)) ⊆ (𝐴 ∖ (𝑔‘suc 𝑦)))
3210adantr 472 . . . . . . . . . . 11 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → 𝐴 ∈ V)
3313ffvelrnda 6510 . . . . . . . . . . . 12 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → (𝑔𝑦) ∈ 𝒫 𝐴)
3433elpwid 4302 . . . . . . . . . . 11 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → (𝑔𝑦) ⊆ 𝐴)
352isf34lem1 9357 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ (𝑔𝑦) ⊆ 𝐴) → (𝐹‘(𝑔𝑦)) = (𝐴 ∖ (𝑔𝑦)))
3632, 34, 35syl2anc 696 . . . . . . . . . 10 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → (𝐹‘(𝑔𝑦)) = (𝐴 ∖ (𝑔𝑦)))
37 peano2 7239 . . . . . . . . . . . . 13 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
38 ffvelrn 6508 . . . . . . . . . . . . 13 ((𝑔:ω⟶𝒫 𝐴 ∧ suc 𝑦 ∈ ω) → (𝑔‘suc 𝑦) ∈ 𝒫 𝐴)
3913, 37, 38syl2an 495 . . . . . . . . . . . 12 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → (𝑔‘suc 𝑦) ∈ 𝒫 𝐴)
4039elpwid 4302 . . . . . . . . . . 11 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → (𝑔‘suc 𝑦) ⊆ 𝐴)
412isf34lem1 9357 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ (𝑔‘suc 𝑦) ⊆ 𝐴) → (𝐹‘(𝑔‘suc 𝑦)) = (𝐴 ∖ (𝑔‘suc 𝑦)))
4232, 40, 41syl2anc 696 . . . . . . . . . 10 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → (𝐹‘(𝑔‘suc 𝑦)) = (𝐴 ∖ (𝑔‘suc 𝑦)))
4336, 42sseq12d 3763 . . . . . . . . 9 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → ((𝐹‘(𝑔𝑦)) ⊆ (𝐹‘(𝑔‘suc 𝑦)) ↔ (𝐴 ∖ (𝑔𝑦)) ⊆ (𝐴 ∖ (𝑔‘suc 𝑦))))
4431, 43syl5ibr 236 . . . . . . . 8 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → ((𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → (𝐹‘(𝑔𝑦)) ⊆ (𝐹‘(𝑔‘suc 𝑦))))
45 fvco3 6425 . . . . . . . . . 10 ((𝑔:ω⟶𝒫 𝐴𝑦 ∈ ω) → ((𝐹𝑔)‘𝑦) = (𝐹‘(𝑔𝑦)))
4613, 45sylan 489 . . . . . . . . 9 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → ((𝐹𝑔)‘𝑦) = (𝐹‘(𝑔𝑦)))
47 fvco3 6425 . . . . . . . . . 10 ((𝑔:ω⟶𝒫 𝐴 ∧ suc 𝑦 ∈ ω) → ((𝐹𝑔)‘suc 𝑦) = (𝐹‘(𝑔‘suc 𝑦)))
4813, 37, 47syl2an 495 . . . . . . . . 9 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → ((𝐹𝑔)‘suc 𝑦) = (𝐹‘(𝑔‘suc 𝑦)))
4946, 48sseq12d 3763 . . . . . . . 8 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → (((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) ↔ (𝐹‘(𝑔𝑦)) ⊆ (𝐹‘(𝑔‘suc 𝑦))))
5044, 49sylibrd 249 . . . . . . 7 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → ((𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦)))
5150ralimdva 3088 . . . . . 6 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦)))
52 ffn 6194 . . . . . . . . 9 (𝐹:𝒫 𝐴⟶𝒫 𝐴𝐹 Fn 𝒫 𝐴)
5312, 52syl 17 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → 𝐹 Fn 𝒫 𝐴)
54 imassrn 5623 . . . . . . . . 9 (𝐹 “ ran 𝑔) ⊆ ran 𝐹
55 frn 6202 . . . . . . . . . 10 (𝐹:𝒫 𝐴⟶𝒫 𝐴 → ran 𝐹 ⊆ 𝒫 𝐴)
5612, 55syl 17 . . . . . . . . 9 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → ran 𝐹 ⊆ 𝒫 𝐴)
5754, 56syl5ss 3743 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (𝐹 “ ran 𝑔) ⊆ 𝒫 𝐴)
58 fnfvima 6647 . . . . . . . . 9 ((𝐹 Fn 𝒫 𝐴 ∧ (𝐹 “ ran 𝑔) ⊆ 𝒫 𝐴 (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔)) → (𝐹 (𝐹 “ ran 𝑔)) ∈ (𝐹 “ (𝐹 “ ran 𝑔)))
59583expia 1114 . . . . . . . 8 ((𝐹 Fn 𝒫 𝐴 ∧ (𝐹 “ ran 𝑔) ⊆ 𝒫 𝐴) → ( (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔) → (𝐹 (𝐹 “ ran 𝑔)) ∈ (𝐹 “ (𝐹 “ ran 𝑔))))
6053, 57, 59syl2anc 696 . . . . . . 7 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → ( (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔) → (𝐹 (𝐹 “ ran 𝑔)) ∈ (𝐹 “ (𝐹 “ ran 𝑔))))
61 incom 3936 . . . . . . . . . . . . 13 (dom 𝐹 ∩ ran 𝑔) = (ran 𝑔 ∩ dom 𝐹)
62 frn 6202 . . . . . . . . . . . . . . . 16 (𝑔:ω⟶𝒫 𝐴 → ran 𝑔 ⊆ 𝒫 𝐴)
6313, 62syl 17 . . . . . . . . . . . . . . 15 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → ran 𝑔 ⊆ 𝒫 𝐴)
64 fdm 6200 . . . . . . . . . . . . . . . 16 (𝐹:𝒫 𝐴⟶𝒫 𝐴 → dom 𝐹 = 𝒫 𝐴)
6512, 64syl 17 . . . . . . . . . . . . . . 15 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → dom 𝐹 = 𝒫 𝐴)
6663, 65sseqtr4d 3771 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → ran 𝑔 ⊆ dom 𝐹)
67 df-ss 3717 . . . . . . . . . . . . . 14 (ran 𝑔 ⊆ dom 𝐹 ↔ (ran 𝑔 ∩ dom 𝐹) = ran 𝑔)
6866, 67sylib 208 . . . . . . . . . . . . 13 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (ran 𝑔 ∩ dom 𝐹) = ran 𝑔)
6961, 68syl5eq 2794 . . . . . . . . . . . 12 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (dom 𝐹 ∩ ran 𝑔) = ran 𝑔)
70 fdm 6200 . . . . . . . . . . . . . . 15 (𝑔:ω⟶𝒫 𝐴 → dom 𝑔 = ω)
7113, 70syl 17 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → dom 𝑔 = ω)
72 peano1 7238 . . . . . . . . . . . . . . 15 ∅ ∈ ω
73 ne0i 4052 . . . . . . . . . . . . . . 15 (∅ ∈ ω → ω ≠ ∅)
7472, 73mp1i 13 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → ω ≠ ∅)
7571, 74eqnetrd 2987 . . . . . . . . . . . . 13 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → dom 𝑔 ≠ ∅)
76 dm0rn0 5485 . . . . . . . . . . . . . 14 (dom 𝑔 = ∅ ↔ ran 𝑔 = ∅)
7776necon3bii 2972 . . . . . . . . . . . . 13 (dom 𝑔 ≠ ∅ ↔ ran 𝑔 ≠ ∅)
7875, 77sylib 208 . . . . . . . . . . . 12 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → ran 𝑔 ≠ ∅)
7969, 78eqnetrd 2987 . . . . . . . . . . 11 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (dom 𝐹 ∩ ran 𝑔) ≠ ∅)
80 imadisj 5630 . . . . . . . . . . . 12 ((𝐹 “ ran 𝑔) = ∅ ↔ (dom 𝐹 ∩ ran 𝑔) = ∅)
8180necon3bii 2972 . . . . . . . . . . 11 ((𝐹 “ ran 𝑔) ≠ ∅ ↔ (dom 𝐹 ∩ ran 𝑔) ≠ ∅)
8279, 81sylibr 224 . . . . . . . . . 10 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (𝐹 “ ran 𝑔) ≠ ∅)
832isf34lem4 9362 . . . . . . . . . 10 ((𝐴 ∈ V ∧ ((𝐹 “ ran 𝑔) ⊆ 𝒫 𝐴 ∧ (𝐹 “ ran 𝑔) ≠ ∅)) → (𝐹 (𝐹 “ ran 𝑔)) = (𝐹 “ (𝐹 “ ran 𝑔)))
8410, 57, 82, 83syl12anc 1461 . . . . . . . . 9 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (𝐹 (𝐹 “ ran 𝑔)) = (𝐹 “ (𝐹 “ ran 𝑔)))
852isf34lem3 9360 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ ran 𝑔 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹 “ ran 𝑔)) = ran 𝑔)
8610, 63, 85syl2anc 696 . . . . . . . . . 10 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (𝐹 “ (𝐹 “ ran 𝑔)) = ran 𝑔)
8786inteqd 4620 . . . . . . . . 9 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (𝐹 “ (𝐹 “ ran 𝑔)) = ran 𝑔)
8884, 87eqtrd 2782 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (𝐹 (𝐹 “ ran 𝑔)) = ran 𝑔)
8988, 86eleq12d 2821 . . . . . . 7 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → ((𝐹 (𝐹 “ ran 𝑔)) ∈ (𝐹 “ (𝐹 “ ran 𝑔)) ↔ ran 𝑔 ∈ ran 𝑔))
9060, 89sylibd 229 . . . . . 6 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → ( (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔) → ran 𝑔 ∈ ran 𝑔))
9151, 90imim12d 81 . . . . 5 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → ((∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) → (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔)) → (∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ran 𝑔 ∈ ran 𝑔)))
9230, 91sylcom 30 . . . 4 (∀𝑓 ∈ (𝒫 𝐴𝑚 ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ran 𝑔 ∈ ran 𝑔)))
9392ralrimiv 3091 . . 3 (∀𝑓 ∈ (𝒫 𝐴𝑚 ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → ∀𝑔 ∈ (𝒫 𝐴𝑚 ω)(∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ran 𝑔 ∈ ran 𝑔))
94 isfin3-3 9353 . . 3 (𝐴𝑉 → (𝐴 ∈ FinIII ↔ ∀𝑔 ∈ (𝒫 𝐴𝑚 ω)(∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ran 𝑔 ∈ ran 𝑔)))
9593, 94syl5ibr 236 . 2 (𝐴𝑉 → (∀𝑓 ∈ (𝒫 𝐴𝑚 ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → 𝐴 ∈ FinIII))
966, 95impbid2 216 1 (𝐴𝑉 → (𝐴 ∈ FinIII ↔ ∀𝑓 ∈ (𝒫 𝐴𝑚 ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1620  wcel 2127  wne 2920  wral 3038  Vcvv 3328  cdif 3700  cin 3702  wss 3703  c0 4046  𝒫 cpw 4290   cuni 4576   cint 4615  cmpt 4869  dom cdm 5254  ran crn 5255  cima 5257  ccom 5258  suc csuc 5874   Fn wfn 6032  wf 6033  cfv 6037  (class class class)co 6801  ωcom 7218  𝑚 cmap 8011  FinIIIcfin3 9266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-se 5214  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-isom 6046  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-rpss 7090  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-seqom 7700  df-1o 7717  df-oadd 7721  df-er 7899  df-map 8013  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-wdom 8617  df-card 8926  df-fin4 9272  df-fin3 9273
This theorem is referenced by:  isfin3-4  9367
  Copyright terms: Public domain W3C validator