MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfbas2 Structured version   Visualization version   GIF version

Theorem isfbas2 21579
Description: The predicate "𝐹 is a filter base." (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
isfbas2 (𝐵𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝐵,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem isfbas2
StepHypRef Expression
1 isfbas 21573 . 2 (𝐵𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
2 elin 3780 . . . . . . . 8 (𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥𝑦)) ↔ (𝑧𝐹𝑧 ∈ 𝒫 (𝑥𝑦)))
3 selpw 4143 . . . . . . . . 9 (𝑧 ∈ 𝒫 (𝑥𝑦) ↔ 𝑧 ⊆ (𝑥𝑦))
43anbi2i 729 . . . . . . . 8 ((𝑧𝐹𝑧 ∈ 𝒫 (𝑥𝑦)) ↔ (𝑧𝐹𝑧 ⊆ (𝑥𝑦)))
52, 4bitri 264 . . . . . . 7 (𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥𝑦)) ↔ (𝑧𝐹𝑧 ⊆ (𝑥𝑦)))
65exbii 1771 . . . . . 6 (∃𝑧 𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥𝑦)) ↔ ∃𝑧(𝑧𝐹𝑧 ⊆ (𝑥𝑦)))
7 n0 3913 . . . . . 6 ((𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥𝑦)))
8 df-rex 2914 . . . . . 6 (∃𝑧𝐹 𝑧 ⊆ (𝑥𝑦) ↔ ∃𝑧(𝑧𝐹𝑧 ⊆ (𝑥𝑦)))
96, 7, 83bitr4i 292 . . . . 5 ((𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ∃𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
1092ralbii 2977 . . . 4 (∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
11103anbi3i 1253 . . 3 ((𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅) ↔ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦)))
1211anbi2i 729 . 2 ((𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦))))
131, 12syl6bb 276 1 (𝐵𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036  wex 1701  wcel 1987  wne 2790  wnel 2893  wral 2908  wrex 2909  cin 3559  wss 3560  c0 3897  𝒫 cpw 4136  cfv 5857  fBascfbas 19674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fv 5865  df-fbas 19683
This theorem is referenced by:  fbasssin  21580  fbun  21584  opnfbas  21586  isfil2  21600  fsubbas  21611  fbasrn  21628  rnelfmlem  21696  metustfbas  22302  tailfb  32067
  Copyright terms: Public domain W3C validator