MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfcls Structured version   Visualization version   GIF version

Theorem isfcls 21732
Description: A cluster point of a filter. (Contributed by Jeff Hankins, 10-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
fclsval.x 𝑋 = 𝐽
Assertion
Ref Expression
isfcls (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
Distinct variable groups:   𝐴,𝑠   𝐹,𝑠   𝑋,𝑠   𝐽,𝑠

Proof of Theorem isfcls
Dummy variables 𝑓 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anass 680 . 2 ((((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ (𝑋 = 𝐹 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
2 fvssunirn 6179 . . . . . . . 8 (Fil‘𝑋) ⊆ ran Fil
32sseli 3583 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ran Fil)
4 filunibas 21604 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
54eqcomd 2627 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → 𝑋 = 𝐹)
63, 5jca 554 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ran Fil ∧ 𝑋 = 𝐹))
7 filunirn 21605 . . . . . . 7 (𝐹 ran Fil ↔ 𝐹 ∈ (Fil‘ 𝐹))
8 fveq2 6153 . . . . . . . . 9 (𝑋 = 𝐹 → (Fil‘𝑋) = (Fil‘ 𝐹))
98eleq2d 2684 . . . . . . . 8 (𝑋 = 𝐹 → (𝐹 ∈ (Fil‘𝑋) ↔ 𝐹 ∈ (Fil‘ 𝐹)))
109biimparc 504 . . . . . . 7 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑋 = 𝐹) → 𝐹 ∈ (Fil‘𝑋))
117, 10sylanb 489 . . . . . 6 ((𝐹 ran Fil ∧ 𝑋 = 𝐹) → 𝐹 ∈ (Fil‘𝑋))
126, 11impbii 199 . . . . 5 (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ran Fil ∧ 𝑋 = 𝐹))
1312anbi2i 729 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) ↔ (𝐽 ∈ Top ∧ (𝐹 ran Fil ∧ 𝑋 = 𝐹)))
1413anbi1i 730 . . 3 (((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ ((𝐽 ∈ Top ∧ (𝐹 ran Fil ∧ 𝑋 = 𝐹)) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
15 df-3an 1038 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
16 anass 680 . . . 4 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) ↔ (𝐽 ∈ Top ∧ (𝐹 ran Fil ∧ 𝑋 = 𝐹)))
1716anbi1i 730 . . 3 ((((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ ((𝐽 ∈ Top ∧ (𝐹 ran Fil ∧ 𝑋 = 𝐹)) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
1814, 15, 173bitr4i 292 . 2 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
19 df-fcls 21664 . . . 4 fClus = (𝑗 ∈ Top, 𝑓 ran Fil ↦ if( 𝑗 = 𝑓, 𝑥𝑓 ((cls‘𝑗)‘𝑥), ∅))
2019elmpt2cl 6836 . . 3 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ Top ∧ 𝐹 ran Fil))
21 fclsval.x . . . . . . 7 𝑋 = 𝐽
2221fclsval 21731 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘ 𝐹)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅))
237, 22sylan2b 492 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐽 fClus 𝐹) = if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅))
2423eleq2d 2684 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ 𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅)))
25 n0i 3901 . . . . . . 7 (𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) → ¬ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) = ∅)
26 iffalse 4072 . . . . . . 7 𝑋 = 𝐹 → if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) = ∅)
2725, 26nsyl2 142 . . . . . 6 (𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) → 𝑋 = 𝐹)
2827a1i 11 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) → 𝑋 = 𝐹))
2928pm4.71rd 666 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) ↔ (𝑋 = 𝐹𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅))))
30 iftrue 4069 . . . . . . . 8 (𝑋 = 𝐹 → if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) = 𝑠𝐹 ((cls‘𝐽)‘𝑠))
3130adantl 482 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) = 𝑠𝐹 ((cls‘𝐽)‘𝑠))
3231eleq2d 2684 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) ↔ 𝐴 𝑠𝐹 ((cls‘𝐽)‘𝑠)))
33 elex 3201 . . . . . . . 8 (𝐴 𝑠𝐹 ((cls‘𝐽)‘𝑠) → 𝐴 ∈ V)
3433a1i 11 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (𝐴 𝑠𝐹 ((cls‘𝐽)‘𝑠) → 𝐴 ∈ V))
35 filn0 21585 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘ 𝐹) → 𝐹 ≠ ∅)
367, 35sylbi 207 . . . . . . . . . 10 (𝐹 ran Fil → 𝐹 ≠ ∅)
3736ad2antlr 762 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → 𝐹 ≠ ∅)
38 r19.2z 4037 . . . . . . . . . 10 ((𝐹 ≠ ∅ ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))
3938ex 450 . . . . . . . . 9 (𝐹 ≠ ∅ → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
4037, 39syl 17 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
41 elex 3201 . . . . . . . . 9 (𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴 ∈ V)
4241rexlimivw 3023 . . . . . . . 8 (∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴 ∈ V)
4340, 42syl6 35 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴 ∈ V))
44 eliin 4496 . . . . . . . 8 (𝐴 ∈ V → (𝐴 𝑠𝐹 ((cls‘𝐽)‘𝑠) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
4544a1i 11 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (𝐴 ∈ V → (𝐴 𝑠𝐹 ((cls‘𝐽)‘𝑠) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
4634, 43, 45pm5.21ndd 369 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (𝐴 𝑠𝐹 ((cls‘𝐽)‘𝑠) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
4732, 46bitrd 268 . . . . 5 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
4847pm5.32da 672 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → ((𝑋 = 𝐹𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅)) ↔ (𝑋 = 𝐹 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
4924, 29, 483bitrd 294 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝑋 = 𝐹 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
5020, 49biadan2 673 . 2 (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ (𝑋 = 𝐹 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
511, 18, 503bitr4ri 293 1 (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  Vcvv 3189  c0 3896  ifcif 4063   cuni 4407   ciin 4491  ran crn 5080  cfv 5852  (class class class)co 6610  Topctop 20626  clsccl 20741  Filcfil 21568   fClus cfcls 21659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-int 4446  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-fbas 19671  df-fil 21569  df-fcls 21664
This theorem is referenced by:  fclsfil  21733  fclstop  21734  isfcls2  21736  fclssscls  21741  flimfcls  21749
  Copyright terms: Public domain W3C validator