MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isffth2 Structured version   Visualization version   GIF version

Theorem isffth2 16340
Description: A fully faithful functor is a functor which is bijective on hom-sets. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isfth.b 𝐵 = (Base‘𝐶)
isfth.h 𝐻 = (Hom ‘𝐶)
isfth.j 𝐽 = (Hom ‘𝐷)
Assertion
Ref Expression
isffth2 (𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1-onto→((𝐹𝑥)𝐽(𝐹𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦

Proof of Theorem isffth2
StepHypRef Expression
1 isfth.b . . . 4 𝐵 = (Base‘𝐶)
2 isfth.j . . . 4 𝐽 = (Hom ‘𝐷)
3 isfth.h . . . 4 𝐻 = (Hom ‘𝐶)
41, 2, 3isfull2 16335 . . 3 (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
51, 3, 2isfth2 16339 . . 3 (𝐹(𝐶 Faith 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦))))
64, 5anbi12i 728 . 2 ((𝐹(𝐶 Full 𝐷)𝐺𝐹(𝐶 Faith 𝐷)𝐺) ↔ ((𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))) ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)))))
7 brin 4623 . 2 (𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺 ↔ (𝐹(𝐶 Full 𝐷)𝐺𝐹(𝐶 Faith 𝐷)𝐺))
8 df-f1o 5792 . . . . . . 7 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1-onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
9 ancom 464 . . . . . . 7 (((𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))) ↔ ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦))))
108, 9bitri 262 . . . . . 6 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1-onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦))))
11102ralbii 2958 . . . . 5 (∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1-onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦))))
12 r19.26-2 3041 . . . . 5 (∀𝑥𝐵𝑦𝐵 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦))) ↔ (∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦))))
1311, 12bitri 262 . . . 4 (∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1-onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦))))
1413anbi2i 725 . . 3 ((𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1-onto→((𝐹𝑥)𝐽(𝐹𝑦))) ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)))))
15 anandi 866 . . 3 ((𝐹(𝐶 Func 𝐷)𝐺 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)))) ↔ ((𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))) ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)))))
1614, 15bitri 262 . 2 ((𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1-onto→((𝐹𝑥)𝐽(𝐹𝑦))) ↔ ((𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))) ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)))))
176, 7, 163bitr4i 290 1 (𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1-onto→((𝐹𝑥)𝐽(𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 194  wa 382   = wceq 1474  wral 2890  cin 3533   class class class wbr 4572  1-1wf1 5782  ontowfo 5783  1-1-ontowf1o 5784  cfv 5785  (class class class)co 6522  Basecbs 15636  Hom chom 15720   Func cfunc 16278   Full cful 16326   Faith cfth 16327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-rep 4688  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-ral 2895  df-rex 2896  df-reu 2897  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-op 4126  df-uni 4362  df-iun 4446  df-br 4573  df-opab 4633  df-mpt 4634  df-id 4938  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-1st 7031  df-2nd 7032  df-map 7718  df-ixp 7767  df-func 16282  df-full 16328  df-fth 16329
This theorem is referenced by:  idffth  16357  ressffth  16362  catciso  16521  yonffthlem  16686
  Copyright terms: Public domain W3C validator