MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfil2 Structured version   Visualization version   GIF version

Theorem isfil2 21573
Description: Derive the standard axioms of a filter. (Contributed by Mario Carneiro, 27-Nov-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
isfil2 (𝐹 ∈ (Fil‘𝑋) ↔ ((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑋,𝑦

Proof of Theorem isfil2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 filsspw 21568 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
2 0nelfil 21566 . . . 4 (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐹)
3 filtop 21572 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
41, 2, 33jca 1240 . . 3 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹))
5 elpwi 4142 . . . . 5 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
6 filss 21570 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑦𝐹𝑥𝑋𝑦𝑥)) → 𝑥𝐹)
763exp2 1282 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → (𝑦𝐹 → (𝑥𝑋 → (𝑦𝑥𝑥𝐹))))
87com23 86 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝑋 → (𝑦𝐹 → (𝑦𝑥𝑥𝐹))))
98imp 445 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) → (𝑦𝐹 → (𝑦𝑥𝑥𝐹)))
109rexlimdv 3023 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) → (∃𝑦𝐹 𝑦𝑥𝑥𝐹))
115, 10sylan2 491 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → (∃𝑦𝐹 𝑦𝑥𝑥𝐹))
1211ralrimiva 2960 . . 3 (𝐹 ∈ (Fil‘𝑋) → ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹))
13 filin 21571 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹𝑦𝐹) → (𝑥𝑦) ∈ 𝐹)
14133expb 1263 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥𝐹𝑦𝐹)) → (𝑥𝑦) ∈ 𝐹)
1514ralrimivva 2965 . . 3 (𝐹 ∈ (Fil‘𝑋) → ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹)
164, 12, 153jca 1240 . 2 (𝐹 ∈ (Fil‘𝑋) → ((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹))
17 simp11 1089 . . . 4 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → 𝐹 ⊆ 𝒫 𝑋)
18 simp13 1091 . . . . . 6 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → 𝑋𝐹)
19 ne0i 3899 . . . . . 6 (𝑋𝐹𝐹 ≠ ∅)
2018, 19syl 17 . . . . 5 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → 𝐹 ≠ ∅)
21 simp12 1090 . . . . . 6 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → ¬ ∅ ∈ 𝐹)
22 df-nel 2894 . . . . . 6 (∅ ∉ 𝐹 ↔ ¬ ∅ ∈ 𝐹)
2321, 22sylibr 224 . . . . 5 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → ∅ ∉ 𝐹)
24 ssid 3605 . . . . . . . . 9 (𝑥𝑦) ⊆ (𝑥𝑦)
25 sseq1 3607 . . . . . . . . . 10 (𝑧 = (𝑥𝑦) → (𝑧 ⊆ (𝑥𝑦) ↔ (𝑥𝑦) ⊆ (𝑥𝑦)))
2625rspcev 3295 . . . . . . . . 9 (((𝑥𝑦) ∈ 𝐹 ∧ (𝑥𝑦) ⊆ (𝑥𝑦)) → ∃𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
2724, 26mpan2 706 . . . . . . . 8 ((𝑥𝑦) ∈ 𝐹 → ∃𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
2827ralimi 2947 . . . . . . 7 (∀𝑦𝐹 (𝑥𝑦) ∈ 𝐹 → ∀𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
2928ralimi 2947 . . . . . 6 (∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹 → ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
30293ad2ant3 1082 . . . . 5 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
3120, 23, 303jca 1240 . . . 4 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦)))
32 isfbas2 21552 . . . . 5 (𝑋𝐹 → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦)))))
3318, 32syl 17 . . . 4 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦)))))
3417, 31, 33mpbir2and 956 . . 3 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → 𝐹 ∈ (fBas‘𝑋))
35 n0 3909 . . . . . . . 8 ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝐹 ∩ 𝒫 𝑥))
36 elin 3776 . . . . . . . . . 10 (𝑦 ∈ (𝐹 ∩ 𝒫 𝑥) ↔ (𝑦𝐹𝑦 ∈ 𝒫 𝑥))
37 elpwi 4142 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 𝑥𝑦𝑥)
3837anim2i 592 . . . . . . . . . 10 ((𝑦𝐹𝑦 ∈ 𝒫 𝑥) → (𝑦𝐹𝑦𝑥))
3936, 38sylbi 207 . . . . . . . . 9 (𝑦 ∈ (𝐹 ∩ 𝒫 𝑥) → (𝑦𝐹𝑦𝑥))
4039eximi 1759 . . . . . . . 8 (∃𝑦 𝑦 ∈ (𝐹 ∩ 𝒫 𝑥) → ∃𝑦(𝑦𝐹𝑦𝑥))
4135, 40sylbi 207 . . . . . . 7 ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → ∃𝑦(𝑦𝐹𝑦𝑥))
42 df-rex 2913 . . . . . . 7 (∃𝑦𝐹 𝑦𝑥 ↔ ∃𝑦(𝑦𝐹𝑦𝑥))
4341, 42sylibr 224 . . . . . 6 ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → ∃𝑦𝐹 𝑦𝑥)
4443imim1i 63 . . . . 5 ((∃𝑦𝐹 𝑦𝑥𝑥𝐹) → ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹))
4544ralimi 2947 . . . 4 (∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) → ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹))
46453ad2ant2 1081 . . 3 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹))
47 isfil 21564 . . 3 (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹)))
4834, 46, 47sylanbrc 697 . 2 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → 𝐹 ∈ (Fil‘𝑋))
4916, 48impbii 199 1 (𝐹 ∈ (Fil‘𝑋) ↔ ((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036  wex 1701  wcel 1987  wne 2790  wnel 2893  wral 2907  wrex 2908  cin 3555  wss 3556  c0 3893  𝒫 cpw 4132  cfv 5849  fBascfbas 19656  Filcfil 21562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-iota 5812  df-fun 5851  df-fv 5857  df-fbas 19665  df-fil 21563
This theorem is referenced by:  isfild  21575  infil  21580  neifil  21597  trfil2  21604
  Copyright terms: Public domain W3C validator