MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfildlem Structured version   Visualization version   GIF version

Theorem isfildlem 21882
Description: Lemma for isfild 21883. (Contributed by Mario Carneiro, 1-Dec-2013.)
Hypotheses
Ref Expression
isfild.1 (𝜑 → (𝑥𝐹 ↔ (𝑥𝐴𝜓)))
isfild.2 (𝜑𝐴 ∈ V)
Assertion
Ref Expression
isfildlem (𝜑 → (𝐵𝐹 ↔ (𝐵𝐴[𝐵 / 𝑥]𝜓)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐵(𝑥)

Proof of Theorem isfildlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3352 . . 3 (𝐵𝐹𝐵 ∈ V)
21a1i 11 . 2 (𝜑 → (𝐵𝐹𝐵 ∈ V))
3 isfild.2 . . . 4 (𝜑𝐴 ∈ V)
4 ssexg 4956 . . . . 5 ((𝐵𝐴𝐴 ∈ V) → 𝐵 ∈ V)
54expcom 450 . . . 4 (𝐴 ∈ V → (𝐵𝐴𝐵 ∈ V))
63, 5syl 17 . . 3 (𝜑 → (𝐵𝐴𝐵 ∈ V))
76adantrd 485 . 2 (𝜑 → ((𝐵𝐴[𝐵 / 𝑥]𝜓) → 𝐵 ∈ V))
8 eleq1 2827 . . . . . 6 (𝑦 = 𝐵 → (𝑦𝐹𝐵𝐹))
9 sseq1 3767 . . . . . . 7 (𝑦 = 𝐵 → (𝑦𝐴𝐵𝐴))
10 dfsbcq 3578 . . . . . . 7 (𝑦 = 𝐵 → ([𝑦 / 𝑥]𝜓[𝐵 / 𝑥]𝜓))
119, 10anbi12d 749 . . . . . 6 (𝑦 = 𝐵 → ((𝑦𝐴[𝑦 / 𝑥]𝜓) ↔ (𝐵𝐴[𝐵 / 𝑥]𝜓)))
128, 11bibi12d 334 . . . . 5 (𝑦 = 𝐵 → ((𝑦𝐹 ↔ (𝑦𝐴[𝑦 / 𝑥]𝜓)) ↔ (𝐵𝐹 ↔ (𝐵𝐴[𝐵 / 𝑥]𝜓))))
1312imbi2d 329 . . . 4 (𝑦 = 𝐵 → ((𝜑 → (𝑦𝐹 ↔ (𝑦𝐴[𝑦 / 𝑥]𝜓))) ↔ (𝜑 → (𝐵𝐹 ↔ (𝐵𝐴[𝐵 / 𝑥]𝜓)))))
14 nfv 1992 . . . . . 6 𝑥𝜑
15 nfv 1992 . . . . . . 7 𝑥 𝑦𝐹
16 nfv 1992 . . . . . . . 8 𝑥 𝑦𝐴
17 nfsbc1v 3596 . . . . . . . 8 𝑥[𝑦 / 𝑥]𝜓
1816, 17nfan 1977 . . . . . . 7 𝑥(𝑦𝐴[𝑦 / 𝑥]𝜓)
1915, 18nfbi 1982 . . . . . 6 𝑥(𝑦𝐹 ↔ (𝑦𝐴[𝑦 / 𝑥]𝜓))
2014, 19nfim 1974 . . . . 5 𝑥(𝜑 → (𝑦𝐹 ↔ (𝑦𝐴[𝑦 / 𝑥]𝜓)))
21 eleq1 2827 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐹𝑦𝐹))
22 sseq1 3767 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
23 sbceq1a 3587 . . . . . . . 8 (𝑥 = 𝑦 → (𝜓[𝑦 / 𝑥]𝜓))
2422, 23anbi12d 749 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥𝐴𝜓) ↔ (𝑦𝐴[𝑦 / 𝑥]𝜓)))
2521, 24bibi12d 334 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝐹 ↔ (𝑥𝐴𝜓)) ↔ (𝑦𝐹 ↔ (𝑦𝐴[𝑦 / 𝑥]𝜓))))
2625imbi2d 329 . . . . 5 (𝑥 = 𝑦 → ((𝜑 → (𝑥𝐹 ↔ (𝑥𝐴𝜓))) ↔ (𝜑 → (𝑦𝐹 ↔ (𝑦𝐴[𝑦 / 𝑥]𝜓)))))
27 isfild.1 . . . . 5 (𝜑 → (𝑥𝐹 ↔ (𝑥𝐴𝜓)))
2820, 26, 27chvar 2407 . . . 4 (𝜑 → (𝑦𝐹 ↔ (𝑦𝐴[𝑦 / 𝑥]𝜓)))
2913, 28vtoclg 3406 . . 3 (𝐵 ∈ V → (𝜑 → (𝐵𝐹 ↔ (𝐵𝐴[𝐵 / 𝑥]𝜓))))
3029com12 32 . 2 (𝜑 → (𝐵 ∈ V → (𝐵𝐹 ↔ (𝐵𝐴[𝐵 / 𝑥]𝜓))))
312, 7, 30pm5.21ndd 368 1 (𝜑 → (𝐵𝐹 ↔ (𝐵𝐴[𝐵 / 𝑥]𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  [wsbc 3576  wss 3715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-v 3342  df-sbc 3577  df-in 3722  df-ss 3729
This theorem is referenced by:  isfild  21883
  Copyright terms: Public domain W3C validator