Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin1-2 Structured version   Visualization version   GIF version

Theorem isfin1-2 9151
 Description: A set is finite in the usual sense iff the power set of its power set is Dedekind finite. (Contributed by Stefan O'Rear, 3-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
isfin1-2 (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ FinIV)

Proof of Theorem isfin1-2
StepHypRef Expression
1 elex 3198 . 2 (𝐴 ∈ Fin → 𝐴 ∈ V)
2 elex 3198 . . 3 (𝒫 𝒫 𝐴 ∈ FinIV → 𝒫 𝒫 𝐴 ∈ V)
3 pwexb 6922 . . . 4 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
4 pwexb 6922 . . . 4 (𝒫 𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V)
53, 4bitri 264 . . 3 (𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V)
62, 5sylibr 224 . 2 (𝒫 𝒫 𝐴 ∈ FinIV𝐴 ∈ V)
7 ominf 8116 . . . . . 6 ¬ ω ∈ Fin
8 pwfi 8205 . . . . . . . 8 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
9 pwfi 8205 . . . . . . . 8 (𝒫 𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ Fin)
108, 9bitri 264 . . . . . . 7 (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ Fin)
11 domfi 8125 . . . . . . . 8 ((𝒫 𝒫 𝐴 ∈ Fin ∧ ω ≼ 𝒫 𝒫 𝐴) → ω ∈ Fin)
1211expcom 451 . . . . . . 7 (ω ≼ 𝒫 𝒫 𝐴 → (𝒫 𝒫 𝐴 ∈ Fin → ω ∈ Fin))
1310, 12syl5bi 232 . . . . . 6 (ω ≼ 𝒫 𝒫 𝐴 → (𝐴 ∈ Fin → ω ∈ Fin))
147, 13mtoi 190 . . . . 5 (ω ≼ 𝒫 𝒫 𝐴 → ¬ 𝐴 ∈ Fin)
15 fineqvlem 8118 . . . . . 6 ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝒫 𝒫 𝐴)
1615ex 450 . . . . 5 (𝐴 ∈ V → (¬ 𝐴 ∈ Fin → ω ≼ 𝒫 𝒫 𝐴))
1714, 16impbid2 216 . . . 4 (𝐴 ∈ V → (ω ≼ 𝒫 𝒫 𝐴 ↔ ¬ 𝐴 ∈ Fin))
1817con2bid 344 . . 3 (𝐴 ∈ V → (𝐴 ∈ Fin ↔ ¬ ω ≼ 𝒫 𝒫 𝐴))
19 isfin4-2 9080 . . . 4 (𝒫 𝒫 𝐴 ∈ V → (𝒫 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝒫 𝐴))
205, 19sylbi 207 . . 3 (𝐴 ∈ V → (𝒫 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝒫 𝐴))
2118, 20bitr4d 271 . 2 (𝐴 ∈ V → (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ FinIV))
221, 6, 21pm5.21nii 368 1 (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ FinIV)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 196   ∈ wcel 1987  Vcvv 3186  𝒫 cpw 4130   class class class wbr 4613  ωcom 7012   ≼ cdom 7897  Fincfn 7899  FinIVcfin4 9046 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fin4 9053 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator