MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin1a Structured version   Visualization version   GIF version

Theorem isfin1a 9326
Description: Definition of a Ia-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin1a (𝐴𝑉 → (𝐴 ∈ FinIa ↔ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ Fin ∨ (𝐴𝑦) ∈ Fin)))
Distinct variable group:   𝑦,𝐴
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem isfin1a
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pweq 4305 . . 3 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
2 difeq1 3864 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
32eleq1d 2824 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑦) ∈ Fin ↔ (𝐴𝑦) ∈ Fin))
43orbi2d 740 . . 3 (𝑥 = 𝐴 → ((𝑦 ∈ Fin ∨ (𝑥𝑦) ∈ Fin) ↔ (𝑦 ∈ Fin ∨ (𝐴𝑦) ∈ Fin)))
51, 4raleqbidv 3291 . 2 (𝑥 = 𝐴 → (∀𝑦 ∈ 𝒫 𝑥(𝑦 ∈ Fin ∨ (𝑥𝑦) ∈ Fin) ↔ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ Fin ∨ (𝐴𝑦) ∈ Fin)))
6 df-fin1a 9319 . 2 FinIa = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ∈ Fin ∨ (𝑥𝑦) ∈ Fin)}
75, 6elab2g 3493 1 (𝐴𝑉 → (𝐴 ∈ FinIa ↔ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ Fin ∨ (𝐴𝑦) ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382   = wceq 1632  wcel 2139  wral 3050  cdif 3712  𝒫 cpw 4302  Fincfn 8123  FinIacfin1a 9312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rab 3059  df-v 3342  df-dif 3718  df-in 3722  df-ss 3729  df-pw 4304  df-fin1a 9319
This theorem is referenced by:  fin1ai  9327  fin11a  9417  enfin1ai  9418
  Copyright terms: Public domain W3C validator