MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin1a Structured version   Visualization version   GIF version

Theorem isfin1a 8974
Description: Definition of a Ia-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin1a (𝐴𝑉 → (𝐴 ∈ FinIa ↔ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ Fin ∨ (𝐴𝑦) ∈ Fin)))
Distinct variable group:   𝑦,𝐴
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem isfin1a
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pweq 4110 . . 3 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
2 difeq1 3682 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
32eleq1d 2671 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑦) ∈ Fin ↔ (𝐴𝑦) ∈ Fin))
43orbi2d 733 . . 3 (𝑥 = 𝐴 → ((𝑦 ∈ Fin ∨ (𝑥𝑦) ∈ Fin) ↔ (𝑦 ∈ Fin ∨ (𝐴𝑦) ∈ Fin)))
51, 4raleqbidv 3128 . 2 (𝑥 = 𝐴 → (∀𝑦 ∈ 𝒫 𝑥(𝑦 ∈ Fin ∨ (𝑥𝑦) ∈ Fin) ↔ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ Fin ∨ (𝐴𝑦) ∈ Fin)))
6 df-fin1a 8967 . 2 FinIa = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ∈ Fin ∨ (𝑥𝑦) ∈ Fin)}
75, 6elab2g 3321 1 (𝐴𝑉 → (𝐴 ∈ FinIa ↔ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ Fin ∨ (𝐴𝑦) ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wo 381   = wceq 1474  wcel 1976  wral 2895  cdif 3536  𝒫 cpw 4107  Fincfn 7818  FinIacfin1a 8960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rab 2904  df-v 3174  df-dif 3542  df-in 3546  df-ss 3553  df-pw 4109  df-fin1a 8967
This theorem is referenced by:  fin1ai  8975  fin11a  9065  enfin1ai  9066
  Copyright terms: Public domain W3C validator